The nucleocapsid protein (N) of the severe acute respiratory syndrome coronavirus (SARS-CoV) packages the viral genomic RNA and is crucial for viability. However, the RNA-binding mechanism is poorly understood. We have shown previously that the N protein contains two structural domains-the N-terminal domain (NTD; residues 45 to 181) and the C-terminal dimerization domain (CTD; residues 248 to 365)-flanked by long stretches of disordered regions accounting for almost half of the entire sequence. Small-angle X-ray scattering data show that the protein is in an extended conformation and that the two structural domains of the SARS-CoV N protein are far apart. Both the NTD and the CTD have been shown to bind RNA. Here we show that all disordered regions are also capable of binding to RNA. Constructs containing multiple RNA-binding regions showed Hill coefficients greater than 1, suggesting that the N protein binds to RNA cooperatively. The effect can be explained by the "coupled-allostery" model, devised to explain the allosteric effect in a multidomain regulatory system. Although the N proteins of different coronaviruses share very low sequence homology, the physicochemical features described above may be conserved across different groups of Coronaviridae. The current results underscore the important roles of multisite nucleic acid binding and intrinsic disorder in N protein function and RNP packaging.Severe acute respiratory syndrome (SARS) is the first pandemic of the 21st century that spread to multiple nations, with a fatality rate of ca. 8%. The disease is caused by a novel SARS-associated coronavirus (SARS-CoV) closely related to the group II coronaviruses, which include the human coronavirus OC43 and murine hepatitis virus (6, 18). Traditional antiviral treatments have had little success against SARS during the outbreak, and vaccines have yet to be developed (35).Coronaviruses are positive-sense single-stranded RNA (ssRNA) viruses. The coronavirus genomic RNA is encapsidated into a helical capsid by the nucleocapsid (N) protein, which is one of the most abundant coronavirus proteins (19). The N protein has nonspecific binding activity toward nucleic acids, including ssRNA, single-stranded DNA, and double-stranded DNA (33). It can also act as an RNA chaperone (39). However, the mechanism of binding of the N protein to nucleic acids is poorly understood.The SARS-CoV N protein is a homodimer composed of 422 amino acids (aa) in each chain. The N protein can be divided into two structural domains interspersed with disordered (unstructured) regions (Fig. 1A) (2). The N-terminal domain (NTD; also called RBD) serves as a putative RNA-binding domain, while the C-terminal domain (CTD; also called DD) is a dimerization domain (13,36). Both the NTD and the CTD bind to nucleic acids through electropositive regions on their surfaces (3, 13, 32). All coronaviruses share similar domain architectures at both the sequence and structure levels. No structure of N protein or any of its domains in complex with nucleic acids is ava...
Green tea catechins, especially (-)-epigallocatechin gallate (EGCG), have been proposed as a chemopreventative for obesity, diabetes, cancer, and cardiovascular diseases. However, relatively little is known about the mechanism of the action of EGCG on fat cell function. This study was designed to investigate the pathways of EGCG's modulation of the mitogenesis of 3T3-L1 preadipocytes. Preadipocyte proliferation as indicated by an increased number of cells and greater incorporation of bromodeoxyuridine (BrdU) was inhibited by EGCG in dose-, time-, and growth phase-dependent manners. Also, EGCG dose and time dependently decreased levels of phospho-ERK1/2, Cdk2, and cyclin D(1) proteins, reduced Cdk2 activity, and increased levels of G(0)/G(1) growth arrest, p21(waf/cip), and p27(kip1), but not p18(ink), proteins and their associations to Cdk2. However, neither MEK1, ERK1/2, p38 MAPK, phospho-p38, JNK, nor phospho-JNK was changed. Increased phospho-ERK1/2 content and Cdk2 activity, respectively, via the transfection of MEK1 and Cdk2 cDNA into preadipocytes prevented EGCG from reducing cell numbers. These data demonstrate the ERK- and Cdk2-dependent antimitogenic effects of EGCG. Moreover, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in changing the mitogenic signals. The signal of EGCG in reducing growth of 3T3-L1 preadipocytes differed from that of 3T3 fibroblasts. Results of this study may relate to the mechanism by which EGCG modulates body weight.
Nucleophosmin/B23 was rapidly up-regulated after UV irradiation as p53, PCNA and c-Jun. UV induction of nucleophosmin/B23 was evidently increased at 3 h post-irradiation, and reached a maximum at 12 h, and remained high for at least 24 h. Over-expression of nucleophosmin/B23 made cells more resistant to UV-induced cell growth inhibition and death as compared with control vector-transfected cells through three main observations: cell growth/death percentage determination; clonogenic survival assay; and flow cytometric analysis. Moreover, nucleophosmin/B23 over-expressed cells had a greater capacity to repair UV-damaged reporter plasmid, indicating a higher nucleotide excision repair (NER) activity. Furthermore, PCNA, an essential component for DNA repair machinery, was correlated with nucleophosmin/B23 expression. Both protein level and promoter activity of PCNA were higher in nucleophosmin/B23 over-expressed cells than in control vector-transfected cells. On the other hand, treatment of cells with nucleophosmin/B23 antisense oligonucleotides decreased nucleophosmin/B23 and PCNA proteins, and potentiated the UV-induced cell killing. The effect of PCNA up-regulation may be one of the reasons that nucleophosmin/B23 over-expression made cells resistant to UV-induced growth inhibition and cell-killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.