The use of synthetic fungicide needs to be gradually reduced because of its adverse effect on human health and the environment. An integrated approach combining fungicides with biological control agents (BCAs) can be used to reduce the fungicide doses, thereby minimizing the risks associated with chemical fungicides. In this study, the combined application of a BCA Trichoderma and a fungicide hymexazol was used to manage the cowpea wilt disease caused by Fusarium oxysporum. The Trichoderma SC012 strain, which is resistant to hymexazol, was screened out and identified as T. asperellum. T. asperellum SC012 showed hyperparasitism to F. oxysporum and could penetrate and encircle the hyphae of pathogen on a medium amended or not with hymexazol. When combined with hymexazol, the population density in the rhizosphere soil of cowpea showed no significant difference compared with the treatment Trichoderma used alone. When the concentration of T. asperellum SC012 or hymexazol was halved, their combined application could control cowpea wilt disease more effectively than their individual use. The findings showed that the combination of Trichoderma and hymexazol could reduce the use of chemical fungicide, which is eco-friendly and may be an important part of integrated control of Fusarium wilt in cowpea.
Background
Salt stress threaten the growth of plants, and even aggravate plant disease. In this article, salt-tolerant Trichoderma strain was isolated, and its potential to alleviate salt stress and diminish cucumber root rot caused by Fusarium oxysporum was evaluated.
Results
Twenty-seven Trichoderma isolates were isolated from samples of sea muds and algae collected from the South Sea of China. Among these, the isolate HN082102.1 showed the most excellent salt tolerance and antagonistic activity against F. oxysporum causing root rot in cucumber and was identified as T. atroviride. Its antagonism ability may be due to mycoparasitism and inhibition effect of volatile substances. The application of Trichoderma mitigated the adverse effects of salt stress and promoted the growth of cucumber under 100 mM and 200 mM NaCl, especially for the root. When T. atroviride HN082102.1 was applied, root fresh weights increased by 92.55 and 84.86%, respectively, and root dry weights increased by 75.71 and 53.31%, respectively. Meanwhile, the application of HN082102.1 reduced the disease index of cucumber root rot by 63.64 and 71.01% under 100- and 0-mM saline conditions, respectively, indicating that this isolate could inhibit cucumber root rot under salt stress.
Conclusions
This is the first report of salt-tolerant T. atroviride isolated from marine habitat showing antagonistic activity to F. oxysporum, and the results provide evidence for the novel strain T. atroviride HN082102.1 in alleviating salt stress and diminishing cucumber root rot, indicating that T. atroviride strain HN082102.1 can be used as biological control agent in saline alkali land.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.