In organic photovoltaics, morphological control of donor and acceptor domains on the nanoscale is key for efficient exciton diffusion and dissociation, carrier transport, and suppression of recombination losses. To realise this, here, we demonstrated a double-fibril network based on ternary donor:acceptor morphology with multi-length scales constructed by combining ancillary conjugated polymer crystallizers and non-fullerene acceptor filament assembly. Using this approach, we achieved an average power conversion efficiency of 19.3% (certified 19.2%). The success lies in the good match between the photoelectric parameters and the morphological characteristic lengths, which utilizes the excitons and free charges efficiently. This strategy leads to enhanced exciton diffusion length (hence exciton dissociation yield) and reduced recombination rate, hence minimizing photon-to-electron losses in the ternary devices as compared to their binary counterparts. The double-fibril network morphology strategy minimizes losses and maximizes the power output, offering the possibility towards 20% power conversion efficiencies in single-junction organic photovoltaics.
MainOrganic semiconductors offer the advantage of high optical absorption and tunable energy levels, enabling thin-film solar cells with high light-to-electron conversion efficiencies over a wide range of wavelengths [1][2][3][4] . Desipte recent progresses, the performance of organic solar cells (OSCs) is still limited by non-ideal exciton and charge transport, which depend not only on the electronic structure of organic semiconductors but also on the nanostructure that is formed by material crystallization and phase separation in a bulk heterojunction (BHJ) setting [5][6][7][8] . A suitable sized phase-separated morphology that balances crystalline region and mixing domain on the nanoscale is therefore needed to further push the power conversion efficiency (PCE) of OSCs, however it is a
The current research reveals the unique photo physical properties and carrier generation mechanisms of high efficiency non-fullerene acceptor based organic photovoltaic blends. The analysis of device performance, morphology, and photo...
Distributed photovoltaics in living environment harvest the sunlight in different incident angles throughout the day. The development of planer solar cells with large light-receiving angle can reduce the requirements in installation form factor and is therefore urgently required. Here, thin film organic photovoltaics with nano-sized phase separation integrated in micro-sized surface topology is demonstrated as an ideal solution to proposed applications. All-polymer solar cells, by means of a newly developed sequential processing, show large magnitude hierarchical morphology with facilitated exciton-to-carrier conversion. The nano fibrilar donor-acceptor network and micron-scale optical field trapping structure in combination contributes to an efficiency of 19.06% (certified 18.59%), which is the highest value to date for all-polymer solar cells. Furthermore, the micron-sized surface topology also contributes to a large light-receiving angle. A 30% improvement of power gain is achieved for the hierarchical morphology comparing to the flat-morphology devices. These inspiring results show that all-polymer solar cell with hierarchical features are particularly suitable for the commercial applications of distributed photovoltaics due to its low installation requirement.
The perfluorosulfonic acid (PFSA) proton exchange membrane (PEM) is the key component for hydrogen fuel cells (FCs). We used in situ synchrotron scattering to investigate the PEM morphology evolution and found a “stream-reservoir” morphology, which enables efficient proton transport. The short-side-chain (SSC) PFSA PEM is fabricated under the guidance of morphology optimization, which delivered a proton conductivity of 193 milliSiemens per centimeter [95% relativity humidity (RH)] and 40 milliSiemens per centimeter (40% RH) at 80°C. The improved glass transition temperature, water permeability, and mechanical strength enable high-temperature low-humidity FC applications. Performance improvement by 82.3% at 110°C and 25% RH is obtained for SSC-PFSA PEM FCs compared to Nafion polymer PEM devices. The insights in chain conformation, packing mechanism, crystallization, and phase separation of PFSAs build up the structure-property relationship. In addition, SSC-PFSA PEM is ideal for high-temperature low-humidity FCs that are needed urgently for high-power-density and heavy-duty applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.