Exosomes are discrete populations of small (40-200 nm in diameter) membranous vesicles that are released into the extracellular space by most cell types, eventually accumulating in the circulation. As molecular messengers, exosomes exert a broad array of vital physiologic functions by transporting information between different cell types. Because of these functional properties, they may have potential as biomarker sources for prognostic and diagnostic disease. Recent research has found that exosomes have potential to be utilized as drug delivery agents for therapeutic targets. However, basic researches on exosomes and researches on their therapeutic potential both require the existence of effective and rapid methods for their separation from human samples. In the current absence of a standardized method, there are several methods available for the separation of exosomes, but very few studies have previously compared the efficiency and suitability of these different methods. This review summarized and compared the available traditional and novel methods for the extraction of exosomes from human samples and considered their advantages and disadvantages for use in clinical laboratories and point-of-care settings.
Abstract. The occurrence and development of pancreatic cancer is a complex process convoluted by multi-pathogenies, multi-stages and multi-factors. S100 proteins are members of the S100 family that regulate multiple cellular pathways related to pancreatic cancer progression and metastasis. S100 proteins have a broad range of intracellular and extracellular functions, including the regulation of protein phosphorylation and enzyme activity, calcium homeostasis and the regulation of cytoskeletal components and transcriptional factors. S100 proteins interact with receptor for advanced glycation end-products (RAGE), p53 and p21, which play a role in the degradation of the extracellular matrix (ECM) and metastasis, and also interact with cytoskeletal proteins and the plasma membrane in pancreatic cancer progression and metastasis. S100A11 and S100P are significant tumor markers for pancreatic cancer and unfavorable predictors for the prognosis of patients who have undergone surgical resection. Recently, S100A2 has been suggested to be a negative prognostic biomarker in pancreatic cancer, and the expression of S100A6 may be an independent prognostic impact factor. The expression of S100A4 and S100P is associated with drug resistance, differentiation, metastasis and clinical outcome. This review summarizes the role and significance of the S100 family signaling network and related proteins in pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.