The discharge characteristics and discharge gap of machining Ti-6Al-4V titanium alloy by cryogenically cooled tool electrode electrical discharge machining (EDM) in distilled water were investigated in this study using the monopulse discharge method. The influence of the cryogenically cooled tool electrode on the discharge gap and the initial maintaining voltage between the electrode and workpiece were analyzed under various temperatures. Test results showed the initial maintaining voltage of the cryogenically cooled tool electrode EDM was lower than that of conventional EDM. The discharge gap of the cryogenically cooled tool electrode EDM was also smaller than that of conventional EDM, which improved the copying accuracy of die-sinking EDM. A comparative experiment of machining Ti-6Al-4V titanium alloy was carried out by using cryogenically cooled tool electrode EDM and conventional EDM, lower electrode wear, higher material removal ratio, and higher corner size machining accuracy was obtained by using cryogenically cooled tool electrode EDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.