SARS-CoV-2, a β-coronavirus, has rapidly spread across the world, highlighting its high transmissibility, but the underlying morphogenesis and pathogenesis remain poorly understood. Here, we characterize the replication dynamics, cell tropism and morphogenesis of SARS-CoV-2 in organotypic human airway epithelial (HAE) cultures. SARS-CoV-2 replicates efficiently and infects both ciliated and secretory cells in HAE cultures. In comparison, HCoV-NL63 replicates to lower titers and is only detected in ciliated cells. SARS-CoV-2 shows a similar morphogenetic process as other coronaviruses but causes plaque-like cytopathic effects in HAE cultures. Cell fusion, apoptosis, destruction of epithelium integrity, cilium shrinking and beaded changes are observed in the plaque regions. Taken together, our results provide important insights into SARS-CoV-2 cell tropism, replication and morphogenesis.
Cortical GABAergic inhibitory interneurons have crucial roles in the development and function of the cerebral cortex. In rodents, nearly all neocortical interneurons are generated from the subcortical ganglionic eminences. In humans and nonhuman primates, however, the developmental origin of neocortical GABAergic interneurons remains unclear. Here we show that the expression patterns of several key transcription factors in the developing primate telencephalon are very similar to those in rodents, delineating the three main subcortical progenitor domains (the medial, lateral and caudal ganglionic eminences) and the interneurons tangentially migrating from them. On the basis of the continuity of Sox6, COUP-TFII and Sp8 transcription factor expression and evidence from cell migration and cell fate analyses, we propose that the majority of primate neocortical GABAergic interneurons originate from ganglionic eminences of the ventral telencephalon. Our findings reveal that the mammalian neocortex shares basic rules for interneuron development, substantially reshaping our understanding of the origin and classification of primate neocortical interneurons.
Density-functional theory (DFT) and its variations provide a fruitful approach to the computational modeling of the microscopic structures and phase behavior of soft-condensed matter. The methodology takes deep root in quantum mechanics but shares a mathematical similarity with a number of classical approaches in statistical mechanics. This review discusses different strategies commonly used to formulate the free-energy functional of complex fluids for either phenomena-oriented applications or as a generic description of the thermodynamic nonideality owing to various components of intermolecular forces. We emphasize the connections among different schemes of DFT approximations, their underlying assumptions, and inherent limitations. We also address extensions of equilibrium DFT to phenomenological theories for the dynamic properties of complex fluids and for the kinetics of phase transitions. In addition, we highlight the recent literature concerning applications of DFT to diverse static and time-dependent phenomena in complex fluids.
Since their discovery in 2011, 2D transition metal carbide/nitride (MXene) materials have received extensive interest due to their unique planar structure, chemical diversity, and superior physiochemical features. Very recently, MXenes have demonstrated outstanding photothermal conversion by virtue of excellent electromagnetic wave absorption capacity and a localized surface plasmon resonance effect. Photothermal conversion is an efficient way to utilize solar energy that allows the transformation of solar illumination into thermal energy, thus enabling MXenes to be applied in various fields, such as solar steam generation and biomedicals. However, the light-to-heat capability of MXenes has been paid much less attention until now. Recent progress in photothermal MXenes is reviewed to provide a comprehensive understanding of their photothermal conversion mechanism and applications. First, synthetic strategies of MXenes and their nanocomposites will be briefly summarized, and the discussion of the photothermal conversion mechanism and, most importantly, current advances in their photothermal applications will follow. It is highly anticipated that 2D MXenes, through elaborate material design and interdisciplinary approach, will become one of the mainstream photothermal materials and their application fields will also be expanded in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.