Understanding the relationship between exogenous melatonin and water deficit stress is crucial for achieving high yields and alleviating the effects of water deficit stress on soybean (Glycine max (L.) Merrill) plants in agriculture. This study investigated the effects of exogenous melatonin on soybean photosynthetic capacity under water deficit stress induced by polyethylene glycol (PEG) 6000. We conducted a potting experiment in 2018 using the soybean (Glycine max L. Merrill) cultivar Suinong 26. We identified the impacts of a concentration of PEG 6000 simulating drought (15%, w/v) and an appropriate melatonin concentration (100 μmol/L) on the growth of soybean seedlings and flowering stages in a preliminary test. We applied exogenous melatonin by foliar spraying and root application to determine the effects on leaf photosynthesis during water deficit stress. Our results indicated that 15% PEG 6000 had an obvious inhibitory effect on the growth of soybean seedlings and flowering stages, causing oxidative stress and damage due to reactive oxygen species (ROS) (H2O2 and O2·-) accumulation and potentially reducing air exchange parameters and photosystem II (PSII) efficiency. The application of exogenous melatonin significantly relieved the inhibitory effects of PEG 6000 stress on seedlings and flowering growth, and gas exchange parameters, potentially improved PSII efficiency, improved the leaf area index (LAI) and the accumulation of dry matter, slowed down oxidative stress and damage to leaves by increasing the activity of antioxidant enzymes (SOD, POD, and CAT), reduced the content of malondialdehyde (MDA), and ultimately improved soybean yield. Overall, the results of this study demonstrated that application of exogenous melatonin at the seedlings and flowering stages of soybean is effective in alleviating plant damage caused by water deficit stress and improving the drought resistance of soybean plants. In addition, the results showed that application of exogenous melatonin by root is superior to foliar spraying.
Understanding the relationship between exogenous melatonin and water deficit stress is crucial for alleviating the effects of water deficit stress at germination stage of soybean (Glycine max (L.) Merrill) in agriculture. This study investigated the effects of exogenous melatonin on soybean antioxidant properties and cell ultrastructure under water deficit stress induced by polyethylene glycol (PEG) 6000. The drought-sensitive soybean variety Suinong 26 was used as the material to study the effects of different concentrations of melatonin (0, 300, 500 μmol·L-1) soaking soybean seeds under drought stress (PEG-6000: 3% and 6%). The results showed that the germination rate (GR), germination potential (GP), germination index (GI) and radicle shape of soybean were affected negatively to different degrees under PEG stress. Moreover, stress induced by different PEG concentrations overproduced the content of reactive oxygen species (H2O2, O2·−) in cells, leading to increased lipid membrane peroxidation as electrolyte leakage (EL) and malondialdehyde (MDA) content, which resulted in impaired cell integrity. However, after seeds soaking with melatonin, the lipid peroxidation of the cell membrane was reduced, and the activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) further increased to minimize the excessive generation of ROS. Similar results were obtained for soluble protein and proline, that may help in regulating the osmotic pressure and maintain cellular integrity. With the interaction of these enzymes, compared with 300 μmol·L-1 melatonin, 500 μmol·L-1 melatonin could more effective to remove the ROS and reduce cell peroxidation. Overall, 500 μmol·L-1 melatonin performed better than 300 μmol·L-1. In conclusion, the seed soaking with melatonin promoted the germination of soybean seeds under water stress.
There is a growing need to enhance the productivity of soybean ( Glycine max L.) under severe drought conditions in order to improve global food security status. Melatonin, a ubiquitous hormone, could alleviate drought stress in various plants. Earlier, we demonstrated that exogenous melatonin treatment could enhance the tolerance of drought-treated soybean. However, the underlying mechanisms by which this hormone exerts drought resistance is still unclear. The present study used transcriptomic and metabolomic techniques to determine some critical genes and pathways regulating melatonin response to drought conditions. Results showed that exogenous melatonin treatment could increase relative water content and decrease electrolyte leakage in the leaves and increase seed yield under drought stress. Transcriptomic analysis showed that there were 852 core differentially expressed genes (DEGs) that were regulated by drought stress and melatonin in soybean leaves. The most enriched drought-responsive genes are mainly involved in the ‘biosynthesis of secondary metabolites’. Metabolomic profiling under drought stress showed higher accumulation levels of secondary metabolites related to drought tolerance after exogenous melatonin treatment. Also, we highlighted the vital role of the pathways including phenylpropanoid, flavonoid, isoflavonoid, and steroid biosynthesis pathways for improvement of drought tolerance in soybean by exogenous melatonin treatment. In all, findings from this study give detailed molecular basis for the application of melatonin as a drought-resistant agent in soybean cultivation.
To investigate the function of melatonin (MT) on nitrogen uptake and metabolism in soybean, six groups of treatments, with and without 100 μM melatonin were conducted at low, normal, and high nitrogen levels (1.5, 7.5, and 15 mM, respectively). The related indexes of nitrogen metabolism and the antioxidant system of seedlings were measured and analysed. Results indicated that MT could enhance the level of nitrogen metabolism by upregulating the coding genes of enzymes related to nitrogen metabolism and increasing total nitrogen content, especially under low nitrogen levels. Under high nitrogen conditions, the addition of MT not only accelerated ammonium assimilation and utilisation by enhancing the activity of glutamine synthetase involved in ammonium assimilation, but also reduced the extent of membrane lipid peroxidation to alleviate the degree of damage by improving the activity of antioxidant enzymes. In addition, MT enhanced soybean growth with positive effects in morphological changes at different nitrogen levels, including significantly increased stem diameter, total leaf area, and root nodule number, and biomass accumulation. Finally, biomass accumulation increased under low, normal, and high nitrogen levels by 9.80%, 14.06%, and 11.44%, respectively. The results suggested that MT could enhance the soybean tolerance to low and excessive N treatments.
Melatonin can directly or indirectly eliminate reactive oxygen species, regulate hormone levels, and improve drought-stressed soybean crop resistance, yield, and quality. The nutrient contents of soybeans grown under normal conditions (WW), drought stress (D), and drought stress with exogenous melatonin (D + M) ( p < 0.05 ) were compared. The differences in the quality of natto from the three groups of soybeans were also analyzed. The results showed that compared with soybeans under normal conditions, those grown under drought stress had reduced yield and carbohydrate, protein, essential amino acid, soybean isoflavone, and other nutrient contents. Besides, natto presented low nattokinase levels (674 U/mL), natto drawing ability was weak, the surface was dull, the taste was poor, and the sensory score was 12 points. Exogenous melatonin increased the carbohydrate content (starch, sucrose, glucose, and fructose) and improved the yield and quality of soybeans under drought. The natto produced by soybeans under drought stress with exogenous melatonin had high nattokinase content (756 U/mL) and long wire drawing. The surface of the product was rich in mucus and had a natto aroma. Its comprehensive sensory score was 20 points. Natto from soybeans under drought stress that were treated with exogenous melatonin showed significantly higher yield, nutrient content, and quality, than those under drought stress without treatment. This study provides theoretical data that can facilitate the development of new methods to improve the quality of soybeans grown under drought conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.