This paper studies the process and features of chromosome construction in mitotic prophase cells of Allium cepa. The results showed that a prominent reorganization of chromatin occurred during G2--early prophase. The 250-400 nm thick compact chromatin threads in G2 nuclei began to disorganize into about 30, 100 and 220 nm chromatin fibres which constituted the loosely organized chromosome outlines in early prophase before chromosome condensation. In middle prophase, chromosome condensation was characterized by the formation of many condensed regions (aggregates of chromatin), which increased in size (1-1.5 microns) when prophase proceeded. Meanwhile, the chromatin threads that constituted and connected the condensed regions became increasingly thicker (120-250 nm). In late prophase adjacent condensed regions fused to form cylinder-shaped chromosomes. Based on these observations, we come to the conclusion that the construction of prophase chromosomes is a two-step process, that is, the reorganization and condensation of chromatin. In addition, we report the study of silver-stained, DNA- and histone-depleted prophase chromosomes, describe morphological features of the non-histone protein (NHP) residue in early, middle and late prophase chromosomes, and discuss the roles of NHPs in chromosome construction.
This paper studies the process and features of chromosome construction in mitotic prophase cells of Allium cepa. The results showed that a prominent reorganization of chromatin occurred during G2--early prophase. The 250-400 nm thick compact chromatin threads in G2 nuclei began to disorganize into about 30, 100 and 220 nm chromatin fibres which constituted the loosely organized chromosome outlines in early prophase before chromosome condensation. In middle prophase, chromosome condensation was characterized by the formation of many condensed regions (aggregates of chromatin), which increased in size (1-1.5 microns) when prophase proceeded. Meanwhile, the chromatin threads that constituted and connected the condensed regions became increasingly thicker (120-250 nm). In late prophase adjacent condensed regions fused to form cylinder-shaped chromosomes. Based on these observations, we come to the conclusion that the construction of prophase chromosomes is a two-step process, that is, the reorganization and condensation of chromatin. In addition, we report the study of silver-stained, DNA- and histone-depleted prophase chromosomes, describe morphological features of the non-histone protein (NHP) residue in early, middle and late prophase chromosomes, and discuss the roles of NHPs in chromosome construction.
The distribution and organization of nucleolar DNA in Vicia faba L. was analyzed by specific cytochemical staining using NAMA-Ur. The results showed that nucleolar DNA was distributed in the FCs and at the FC/DFC junctions. Statistical analysis showed that the rRNA genes occupied about one-third of the total dense fibrillar component region. The rDNA was condensed in some regions and uncondensed in others. Nucleolus-associated chromatin extended from outside the nucleolus to the periphery of the FCs via nucleolar channels, suggesting a possible origin for nucleolar DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.