Antibiotics could act synergistically to combat the protection conferred to clinical isolates of Stenotrophomonas maltophilia by biofilms. Macrolide antibiotics may be effective where used in combination.
Msi-1 knockdown disrupts blood-testis barrier structure and the continuous process of spermatogenesis. A role for Msi-1 in regulating Sertoli cell fate following heat-induced injury is noted.
Bladder cancer is the second most common urological malignancy around the world and is by far the most frequent urological malignancy in China. The abnormal expression of sphingosine kinase 2 (SphK2) is associated with tumor progression and a poor patient survival rate, however, the effect of SphK2 on the bladder cancer cells remains unclear. The aim of the paper was to study the expression of SphK2 in bladder cancer and the role of SphK2 on the cell proliferation, metastasis, and apoptosis in bladder cancer in vitro. Our results showed that SphK2 is up-regulated in bladder cancer tissues compared with the corresponding adjacent non-neoplastic tissues, and the expression level of SphK2 was significantly higher in human bladder cancer cells in comparison with normal bladder epithelial cells. Silencing of SphK2 could inhibit the proliferation ability of T24 cells in vitro. In addition, SphK2 knockdown could induce a significant increase in the number of apoptotic cells. Furthermore, the transwell assay also showed significant cell migration inhibition in SphK2 siRNA transfectant compared with cell lines transfected with NC. Thus, this study suggested that SphK2 inhibition may provide a promising treatment for bladder cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.