We study nonparametric likelihood-based estimators of the mean function of counting processes with panel count data using monotone polynomial splines. The generalized Rosen algorithm, proposed by Zhang & Jamshidian (2004), is used to compute the estimators. We show that the proposed spline likelihood-based estimators are consistent and that their rate of convergence can be faster than n 1/3. Simulation studies with moderate samples show that the estimators have smaller variances and mean squared errors than their alternatives proposed by Wellner & Zhang (2000). A real example from a bladder tumour clinical trial is used to illustrate this method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.