Lithium metal is an ideal anode for next-generation high-energy-density batteries. However, lithium dendrite growth has impeded its commercial application. Herein, fabricating Li-based ultrathin alloys with electronic localization and high surface work function via depositing Bi, Al, or Au metals on the surface of copper foil for in situ alloying with lithium is proposed. It is discovered that the electronic localization can induce self-smoothing effect of Li ions, as a result, significantly suppressing the growth of dendritic lithium. Meanwhile, the high surface work function can effectively alleviate side reactions between the electrolyte and lithium. With the as-obtained ultrathin alloys as anodes, excellent cycling performance is achieved. The half cells run stably after more than 120 cycles under high capacity of 4 mAh cm −2 . The S||Bi/Cu-Li full cell delivers a specific capacity of 736 mAh g −1 after 200 cycles. This work provides a new strategy for fabricating long-life and high-capacity lithium batteries.
Co magnetic films are widely used in high-frequency magnetic recording and vertical magnetic recording due to their high saturation magnetization and magnetocrystalline anisotropy. In this work, ferromagnetic Co magnetic films were prepared on copper substrate by vacuum evaporation combined with heat treatment (H2 atmosphere), to investigate the impact of film thickness and annealing temperature on microstructure and magnetic properties. The results show that with the increase in annealing temperature, the Co thin film physical phase does not change significantly, the crystallinity increases, and the grain size increases, which is consistent with the results obtained from the SEM morphology map of the sample surface, leading to an increase in coercivity. By annealing experiments (atmospheric atmosphere) on Co magnetic films with and without an Al protective layer, as shown by scanning electron microscopy microscopic characterization results, it was verified that the Al layer can protect the inner Co layer from oxidation. As the film thickness increases from 10 to 300 nm, the magnetic properties of Co films change significantly. The saturation magnetization gradually increases from 0.89 to 5.21 emu/g, and the coercivity increases from 124.3 to 363.8 Oe. The remanence ratio of the 10 nm magnetic film is 0.82, which is much higher than the film remanence ratio of 0.46 at 50 nm. This is because when the thickness of the film is between 10 and 50 nm, the magnetic moments partially deviate from the in-plane direction, and the out-of-plane component reduces the film remanence ratio. This study shows that optimizing annealing temperature and film thickness can effectively control the structure and magnetic properties of Co magnetic films, which is of great significance for the development of the magnetic recording field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.