Eight conjugates of a novel camptothecin derivative (Namitecan, NMT) with RGD peptides have been synthesized and biologically evaluated. This study focused on factors that optimize the drug linkage to the transport vector. The different linkages investigated consist of heterofunctional glycol fragments and a lysosomally cleavable peptide. The linkage length and conformation were systematically modified with the purpose to understand their effect on receptor affinity, systemic stability, cytotoxicity, and solubility of the corresponding conjugates. Among the new conjugates prepared, C6 and C7 showed high receptor affinity and tumor cell adhesion, acceptable stability in murine blood, and high cytotoxic activity (IC₅₀ = 8 nM). The rationale, synthetic strategy, and preliminary biological results will be presented.
Abstract:Heparanase is the only known endoglycosidase able to cleave heparan sulfate. Roneparstat and necuparanib, heparanase inhibitors obtained from heparin and currently being tested in man as a potential drugs against cancer, contain in their structure glycol-split uronic acid moieties probably responsible for their strong inhibitory activity. We describe here the total chemical synthesis of the trisaccharide GlcNS6S-GlcA-1,6anGlcNS (1) and its glycol-split (gs) counterpart GlcNS6S-gsGlcA-1,6anGlcNS (2) from glucose. As expected, in a heparanase inhibition assay, compound 2 is one order of magnitude more potent than 1. Using molecular modeling techniques we have created a 3D model of 1 and 2 that has been validated by NOESY NMR experiments. The pure synthetic oligosaccharides have allowed the first in depth study of the conformation of a glycol-split glucuronic acid. Introducing a glycol-split unit in the structure of 1 increases the conformational flexibility and shortens the distance between the two glucosamine motives, thus promoting interaction with heparanase. However, comparing the relative activities of 2 and roneparstat, we can conclude that the glycol-split motive is not the only determinant of the strong inhibitory effect of roneparstat.
N(alpha)-Protected alpha-amino acid bromides were easily generated in situ with 1-bromo-N,N-2-trimethyl-1-propenylamine from the corresponding amino acids under very mild conditions. o-Nbs and the azido moieties proved to be compatible with these overactivated halides and were successfully applied in difficult peptide bond formations. N-Deprotection methods and the total step-by-step solution synthesis of a peptide containing up to seven consecutive L-(alphaMe)Valine residues are also reported. The assembly of this homopeptide was achieved in a short time and in very high yields by the azido/bromide system in a single repetitive operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.