Metal–organic frameworks (MOFs) have drawn intensive attention for their prospect as electrode materials of lithium‐ion batteries. However, MOFs with high capacity usually suffer from poor cycling stability, due to the volume fluctuation during cycles. Herein, based on the structure tenability of MOFs, copper phthalate (Cu‐oBDC), copper isophthalate (Cu‐mBDC), and copper terephthalate (Cu‐pBDC) with the same active sites for lithium storage are chosen as target materials and investigated as anodes for LIBs. The three MOF materials display different cycle stability in the galvanostatic charge–discharge test. Cu‐mBDC and Cu‐pBDC show obvious performance attenuation in cycles, while Cu‐oBDC with the largest interplanar spacing (13.02 Å) is eventually stabilized, and the solid electrolyte interface membrane is formed in the later cycling. At a current density of 100 mA g−1, the Cu‐oBDC delivers a reversible specific discharge capacity of 683.6 mAh g−1 after 250 cycles, outperforming the other two counterparts. This work adjusts the crystal structure of MOFs toward the improvement of cycle stability and provides a strategy to optimize the electrochemical performances of MOFs.
During the past few years, numerous studies have been done in self-assembly. Among most of these studies, Molecular Dynamic Simulation is widely used to construct the experiment model. This work firstly introduced three practical applications of MD simulation in self-assembly. Then, two main kinds of simulation are discussed including all-atom simulation and coarse-grained simulation, together with the way of thoughts before the simulation start. It is found that researchers always start with the whole analysis of the substances that need to be studied. It helps to confirm the appropriate model that can apply in the simulation naturally. Besides, depended on the principles that need to be studied, the way of establishing the simulation system varies, ranging from separation experiment in both types of simulation to the change of essential parameters. Furthermore, the adoption of L-J potential in MD simulation proves to be a wise option on account of its convenient and simple model. It is remarkable that, considering some small details like the differences between implicit and explicit solution, classical Martini force field is replaced by Dry Martini force field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.