Adding a short course of HRT is associated with a small risk for increasing the natural flare rate of lupus. Most of these flares are mild to moderate. The benefits of HRT can be balanced against the risk for flare because HRT did not significantly increase the risk for severe flare compared with placebo.
Identification and characterization of p53 target genes would lead to a better understanding of p53 functions and p53-mediated signaling pathways. Two putative p53 binding sites were identified in the promoter of a gene encoding PTGF-, a type  transforming growth factor (TGF-) superfamily member. Gel shift assay showed that p53 bound to both sites. Luciferase-coupled transactivation assay revealed that the gene promoter was activated in a p53 dose-as well as p53 binding site-dependent manner by wild-type p53 but not by several p53 mutants. The p53 binding and transactivation of the PTGF- promoter was enhanced by etoposide, a p53 activator, and was largely blocked by a dominant negative p53 mutant. Furthermore, expression of endogenous PTGF- was remarkably induced by etoposide in p53-positive, but not in p53-negative, cell lines. Finally, the conditioned medium collected from PTGF--overexpressing cells, but not from the control cells, suppressed tumor cell growth. Growth suppression was not, however, seen in cells that lack functional TGF- receptors or Smad4, suggesting that PTGF- acts through the TGF- signaling pathway. Thus, PTGF-, a secretory protein, is a p53 target that could mediate p53-induced growth suppression in autocrinal as well as paracrinal fashions. The finding made a vertical connection between p53 and TGF- signaling pathways in controlling cell growth and implied a potential important role of p53 in inflammation regulation via PTGF-. growth suppression ͉ inflammation ͉ transcription regulation
Glutathione peroxidase (GPX) is a primary antioxidant enzyme that scavenges hydrogen peroxide or organic hydroperoxides. We have recently found that GPX is induced by etoposide, a topoisomerase II inhibitor and a p53 activator. In a search for a cis-element that confers potential p53 regulation of GPX, we identified a p53 binding site in the promoter of the GPX gene. This site bound to purified p53 as well as p53 in nuclear extract activated by etoposide. A luciferase reporter driven by a 262-base pair GPX promoter fragment was transcriptionally activated by wild type p53 in a p53 binding site-dependent manner. The same reporter was also activated in a p53 binding site-independent manner by several p53 mutants. The p53 binding and transactivation of the GPX promoter were enhanced by etoposide in p53-positive U2-OS cells. Etoposide-induced transactivation was blocked by a dominant negative p53 mutant, indicating that endogenous wild type p53, upon activation by etoposide, transactivated the GPX promoter. Furthermore, expression of endogenous GPX was induced significantly at both mRNA and enzyme activity levels by etoposide in U2-OS cells but not in p53-negative Saos-2 cells. This is the first report demonstrating that GPX is a novel p53 target gene. The finding links the p53 tumor suppressor to an antioxidant enzyme and will facilitate study of the p53 signaling pathway and antioxidant enzyme regulation.
Inhibitor of apoptosis protein (IAP) suppresses apoptosis through binding and inhibiting active caspases-3, -7 and -9 via its baculoviral IAP repeat (BIR) domains. During apoptosis the caspase inhibition by IAPs can be negatively regulated by a mitochondrial protein second mitochondrial-derived activator of caspase (Smac). Smac physically interacts with multiple IAPs and relieves their inhibitory effect on caspases-3, -7 and -9. Recently, a small molecule Smac-mimic compound (Smac-mimic), which potentiates TNF-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-alpha mediated cell death in glioblastoma T98G cells and HeLa cells, was identified and characterized. To determine the efficacy of this compound in breast cancer cells, we first measured protein expression of three IAPs: XIAP, cIAP-1, and cIAP-2 in nine independent breast cancer cell lines. Three cell lines were chosen: a high IAPs expressing line MDA-MB-231, and two low IAPs expressing lines, T47D and MDA-MB-453. The cell lines were tested for their sensitivity to Smac-mimic alone or in combination with TRAIL or etoposide. Acting alone, Smac-mimic was quite potent with a cytotoxic IC50 of 3.8 nM in high IAPs expressing MDA-MB-231 cells, but was inactive at a much higher concentration in low IAPs expressing T47D and MDA-MB-453 cells. In fact, as low as 2.5 nM of Smac-mimic alone was sufficient to activate caspase-3 and induce apoptosis in MDA-MB-231 cells. In combinational treatments with TRAIL or etoposide, Smac-mimic significantly sensitized cells to growth suppression in MDA-MB-231 cells, but to a lesser extent in T47D and MDA-MB-453 cells. Furthermore, it significantly synergized MDA-MB-231, but not T47D cells to apoptosis induced by either TRAIL or etoposide. Thus, in these cell lines, Smac-mimic acts in an apparent IAPs dependent manner to induce apoptosis alone as well as sensitizes breast cancer cells to TRAIL or etoposide induced apoptosis via caspase-3 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.