Cellular polypropylene (PP) films were fluorinated under a high pressure of 13 bar of the F2/N2 mixture and were post-treated by nitrous oxide and isothermal crystallization. The fluorinated and post-treated PP films after being expanded and corona charged exhibit a significantly improved piezoelectric thermal stability. After annealing at 70 °C for 151 h or at 90 °C for 224 h, the piezoelectric d33 value of the fluorinated and post-treated piezoelectric sample still retains 58% or 45% of its initial d33 value, while the corresponding value of the virgin piezoelectric sample has decreased to 29% or 15% of the initial value. Chemical composition analysis of the cross section of the fluorinated and post-treated film by energy-dispersive x-ray spectroscopy indicates that the internal layers have been fluorinated, in spite of a lower degree of fluorination compared with the fluorinated surface layer. Short-circuit and open-circuit TSD current measurements reveal that the fluorinated internal layers, like the fluorinated surface layer, also have very deep charge traps, although there probably is a difference in density of the deep traps between them. The deeply trapped charge on the internal layers of the fluorinated and post-treated piezoelectric sample is responsible for its significantly improved piezoelectric thermal stability.
In this work, to improve the electret properties of cellular polypropylene films, they were fluorinated and post-treated with nitrous oxide and by isothermal crystallization. Surface electret properties of the samples were investigated by thermally stimulated discharge current measurements, and their compositions and structures were analysed by attenuated total reflection infrared spectroscopy and wide angle x-ray diffraction, respectively. Time-dependent deterioration of surface electret properties was observed for the fluorinated samples without the nitrous oxide post-treatment. However, deterioration did not occur for the fluorinated samples post-treated with nitrous oxide, and time-invariant excellent surface electret properties or deep surface charge traps were obtained by the combined post-treatments of the fluorinated samples with nitrous oxide and by isothermal crystallization. Based on the analyses of composition and structure of the treated samples, the deterioration was clarified to be due to a trace of oxygen in the reactive mixture, which led to the formation of peroxy
radicals in the fluorinated surface layer. The time invariability of surface electret properties was owing to the rapid termination of the peroxy
radicals by nitrous oxide. And the deep surface charge traps resulted from the isothermal crystallization treatment which led to an increase in the efficient charging interface between the crystallite and amorphous region and its property change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.