By considering the nonlinear coupling of piezoelectricity, thermoelectricity and pyroelectricity, this paper investigated the polarization effect related to temperature gradient in a thermo-piezoelectric PN junction. The analysis is based on a perturbation method and the one-dimensional nonlinear theories of thermo-piezoelectric semiconductors. It is shown that as thermal load increases, the linear solution gradually separates from the nonlinear one, in which the third-order solution is basically coincident with the nonlinear numerical solution of COMSOL. It is found that the electromechanical fields, carrier transport characteristics and turn-on voltage have a fast response to temperature gradient. By using the perturbation method, the approximate nonlinear solution of a thermo-piezoelectric PN junction can be obtained. Furthermore, the possibility of thermal manipulation is evident in a piezoelectric PN junction. These findings will be instructive to a good understanding of the electromechanical coupling characteristics of a PN junction and beneficial to development of a new method for its property modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.