A central challenge for realizing large-scale quantum processors is the design and realization of qubit-qubit connections: we must be able to perform efficient gates between qubits, yet prevent connections from spoiling qubit quality or prohibiting "debugging" the system. In this work, we present a microwave quantum state router that realizes all-to-all couplings among four independent and detachable quantum modules of superconducting qubits. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules' communication modes. We first demonstrate coherent photon exchange among four communication modes, with an average full-iSWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes' coherence times. We also demonstrate photon transfer and pairwise entanglement between the modules' qubits, and parallel operation of simultaneous iSWAP across the router. The gates demonstrated here can readily be extended to faster and higher-fidelity router operations, as well as scaled to support larger networks of quantum modules.
In this work, we present the design of a superconducting, microwave quantum state router which can realize all-to-all couplings among four quantum modules. Each module consists of a single transmon, readout mode, and communication mode coupled to the router. The router design centers on a parametrically driven, Josephson-junction based three-wave mixing element which generates photon exchange among the modules' communication modes. We first demonstrate SWAP operations among the four communication modes, with an average full-SWAP time of 760 ns and average inter-module gate fidelity of 0.97, limited by our modes' coherences. We also demonstrate photon transfer and pairwise entanglement between the modules' qubits, and parallel operation of simultaneous SWAP gates across the router. These results can readily be extended to faster and higher fidelity router operations, as well as scaled to support larger networks of quantum modules.
One of the primary challenges in realizing large-scale quantum processors is the realization of qubit couplings that balance interaction strength, connectivity, and mode confinement. Moreover, it is very desirable for the device elements to be detachable, allowing components to be built, tested, and replaced independently. In this work, we present a microwave quantum state router, centered on parametrically driven, Josephson-junction based three-wave mixing, that realizes all-to-all couplings among four detachable quantum modules. We demonstrate coherent exchange among all four communication modes, with an average full-iSWAP time of 764 ns and average inferred inter-module exchange fidelity of 0.969, limited by mode coherence. We also demonstrate photon transfer and pairwise entanglement between module qubits, and parallel operation of simultaneous iSWAP exchange across the router. Our router-module architecture serves as a prototype of modular quantum computer that has great potential for enabling flexible, demountable, large-scale quantum networks of superconducting qubits and cavities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.