A three-dimensional porous structure of [Zn7O2(bpdc)4(dmpp)2]·6DEF·10H2O (MAC-7, H2bpdc = 4,4'-biphenyldicarboxylic acid, Hdmpp = 3,5-dimethyl-4-(4'-pyridyl)pyrazole), built of 12-bridged carboxylate-pyrazolate shared Zn7O2 clusters, has been synthesized. Because of the presence of 12-bridged carboxylate-pyrazolate shared building block, MAC-7 is a double-linked pcu-type framework and shows reversible phase transformation. Photoluminescent property studies indicate that MAC-7 could sense nitrobenzene over toluene, p-xylene, and mesitylene by luminescent quenching.
Two novel Zn(II) metal-organic frameworks (MOFs) constructed by trinuclear-triangular and paddle-wheel units, namely {[Zn(5)(dmtrz)(3)(IPA)(3)(OH)]·DMF·H(2)O}(n) (MAC-4, Hdmtrz = 3,5-dimethyl-1H-1,2,4-triazole, H(2)IPA = isophthalic acid, DMF = dimethyl formamide) and {[Zn(5)(dmtrz)(3)(OH-IPA)(3)(OH)]·DMF·5H(2)O}(n) (MAC-4-OH, OH-H(2)IPA = 5-hydroxyisophthalic acid), were solvothermally synthesized. Single-crystal analyses reveal that MAC-4-OH is an iso-reticular framework of MAC-4 with channels functionalized by hydroxyl groups. Gas adsorption reveals that MAC-4-OH shows a significant enhancement for CO(2) uptake compared with that of MAC-4 due to the existence of electrostatic attractive interactions, though its surface area is lower than that of MAC-4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.