Electrophoretic display (EPD) is a popular display technology in recent years. The core of the EPD is electrophoretic particles, and its Zeta potential has an important impact on EPDs. In this work, a method using pyrrolidine mono ionic liquid was proposed to improve the Zeta potential of electrophoretic particles: Copper (II) phthalocyanine pigment was modified with mono ionic liquid 1-Butyl-1-methylpyrrolidinium bromide. The characterization results show that the mono ionic liquid had been successfully coated on pigment particles. At the same time, the dispersion and stability of particles were improved. The modified Copper (II) phthalocyanine pigment could be stably dispersed in tetrachloroethylene for more than 20 days. The Zeta potential increased from 32.42 mV to 49.91 mV, increasing by 53.95%. Finally, the prepared blue electrophoretic particles were compounded with white titanium dioxide to prepare blue and white dual-color electrophoretic dispersion, and then an EPD cell was designed to test its performance. The results show that the prepared electrophoretic dispersion can realize reversible reciprocating motion. Therefore, because of the unique structure and properties of pyrrolidine mono ionic liquids, the blue nanoparticles prepared with pyrrolidine ionic liquids as charge control agents in this study can be used as excellent candidate materials for EPD.
Flexible sensors are highly advantageous for integration in portable and wearable devices. In this work, we propose and validate a simple strategy to achieve whole wafer-size flexible SERS substrate via a one-step metal-assisted chemical etching (MACE). A pre-patterning Si wafer allows for PSi structures to form in tens of microns areas, and thus enables easy detachment of PSi film pieces from bulk Si substrates. The morphology, porosity, and pore size of PS films can be precisely controlled by varying the etchant concentration, which shows obvious effects on film integrity and wettability. The cracks and self-peeling of Psi films can be achieved by the drying conditions after MACE, enabling transfer of Psi films from Si wafer to any substrates, while maintaining their original properties and vertical alignment. After coating with a thin layer of silver (Ag), the rigid and flexible PSi films before and after transfer both show obvious surface-enhanced Raman scattering (SERS) effect. Moreover, flexible PSi films SERS substrates have been demonstrated with high sensitivity (down to 2.6 × 10−9 g/cm2) for detection of methyl parathion (MPT) residues on a curved apple surface. Such a method provides us with quick and high throughput fabrication of nanostructured materials for sensing, catalysis, and electro-optical applications.
The current article discusses surface-enhanced Raman spectroscopy (SERS) as a powerful technique for detecting molecules or ions by analyzing their molecular vibration signals for fingerprint peak recognition. We utilized a patterned sapphire substrate (PSS) featuring periodic micron cone arrays. Subsequently, we prepared a three-dimensional (3D) PSS-loaded regular Ag nanobowls (AgNBs) array using self-assembly and surface galvanic displacement reactions based on polystyrene (PS) nanospheres. The SERS performance and structure of the nanobowl arrays were optimized by manipulating the reaction time. We discovered that the PSS substrates featuring periodic patterns exhibited superior light-trapping effects compared to the planar substrates. The SERS performance of the prepared AgNBs-PSS substrates was tested under the optimized experimental parameters with 4-mercaptobenzoic acid (4-MBA) as the probe molecule, and the enhancement factor (EF) was calculated to be 8.96 × 104. Finite-difference time-domain (FDTD) simulations were conducted to explain that the AgNBs arrays’ hot spots were distributed at the bowl wall locations. Overall, the current research offers a potential route for developing high-performance, low-cost 3D SERS substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.