Here we report a new hybrid anion exchange membrane with enhanced hydroxide conductivity and excellent chemical and dimensional stability by incorporating quaternary ammonium (QA)-functionalized covalent organic framework into brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO). N,N,N′,N′ -Tetramethyl-1,6-hexanediamine (TMHDA) was impregnated into the pores of COF-LZU1 via a vacuum-assisted method, followed by reacting with allyl bromide. The generated QA groups were immobilized within the highly ordered pores of COF-LZU1 via in situ polymerization, forming long-range ordered multiple ion channels. The obtained QA@COF-LZU1 was then mixed with QAPPO to construct a hybrid anion exchange membrane for anion exchange membrane fuel cells (AEMFCs). The hydroxide conductivity of QA@COF-LZU1/PPO hybrid membrane increased up to 168.00 mS cm −1 at 80 °C, about 77% higher than that of pristine membrane. In addition, alkaline stability and thermal stability of the hybrid membranes were obviously enhanced. The excellent performance and the outstanding chemical stability render the COF hybrid membrane a good candidate for the application in AEMFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.