a b s t r a c tHuman motion denoising is an indispensable step of data preprocessing for many motion data based applications. In this paper, we propose a data-driven based human motion denoising method that sparsely selects the most correlated subset of motion bases for clean motion reconstruction. Meanwhile, it takes the statistic property of two common noises, i.e., Gaussian noise and outliers, into account in deriving the objective functions. In particular, our method firstly divides each human pose into five partitions termed as poselets to gain a much fine-grained pose representation. Then, these poselets are reorganized into multiple overlapped poselet groups using a lagged window moving across the entire motion sequence to preserve the embedded spatial-temporal motion patterns. Afterward, five compacted and representative motion dictionaries are constructed in parallel by means of fast K-SVD in the training phase; they are used to remove the noise and outliers from noisy motion sequences in the testing phase by solving ℓ 1 -minimization problems. Extensive experiments show that our method outperforms its competitors. More importantly, compared with other data-driven based method, our method does not need to specifically choose the training data, it can be more easily applied to real-world applications.
Motion capture is an important technique with a wide range of applications in areas such as computer vision, computer animation, film production, and medical rehabilitation. Even with the professional motion capture systems, the acquired raw data mostly contain inevitable noises and outliers. To denoise the data, numerous methods have been developed, while this problem still remains a challenge due to the high complexity of human motion and the diversity of real-life situations. In this paper, we propose a data-driven-based robust human motion denoising approach by mining the spatial-temporal patterns and the structural sparsity embedded in motion data. We first replace the regularly used entire pose model with a much fine-grained partlet model as feature representation to exploit the abundant local body part posture and movement similarities. Then, a robust dictionary learning algorithm is proposed to learn multiple compact and representative motion dictionaries from the training data in parallel. Finally, we reformulate the human motion denoising problem as a robust structured sparse coding problem in which both the noise distribution information and the temporal smoothness property of human motion have been jointly taken into account. Compared with several state-of-the-art motion denoising methods on both the synthetic and real noisy motion data, our method consistently yields better performance than its counterparts. The outputs of our approach are much more stable than that of the others. In addition, it is much easier to setup the training dataset of our method than that of the other data-driven-based methods.
Based on the extracted contours of objects from images, one point to point (P2P) method is proposed for shape matching and image retrieval. Taking contour of one object as reference, contour of another object is transformed to reach their best match, during which the similarity is evaluated by comparison of two corresponding sets of contour points. Translation, scaling and rotation are all considered in transformation, thus the algorithm is robust to objects with different position, size and posture. The experimental results are presented and compared with those from two popular shape based techniques, Hu invariant moments and Zernike moments. Performance of our new approach has proved its efficiency in both matching accuracy and computational expense, and it can be used in related applications together with the other kinds of shape features or even color features, texture features, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.