Exploitation of highly active catalysts for alcohol electrooxidation is urgent for direct alcohol fuel cells (DAFCs). In this research, a facile and mild synthetic approach is utilized to control and tailor the morphology of the three-dimensional (3D) urchin-like Pd@PtNi nanostructures (NSs), and the formation mechanism of the as-prepared nanostructures is expounded in detail. The Pd@PtNi NSs exhibit outstanding electrochemical properties and remarkable durability toward both methanol and ethanol oxidation reaction (MOR and EOR) in alkaline solution. The electrochemically active surface area (ECSA) of the Pd@PtNi NSs is 59.5 m 2 g −1 , and their mass activities for MOR and EOR are 1614.3 and 1502.3 mA mg −1 , respectively, which are much higher than those of their ternary or binary alloy counterparts as well as commercial Pt black catalysts. Moreover, it still retains high current densities after catalyzing 10 000 s, while the current densities of other nanocatalysts reduce to nearly zero. The outstanding electrochemical activities and durability are owing to the specific 3D urchin-like nanostructures providing enormous active sites for catalytic reaction and the synergy effects between Pt, Pd, and Ni atoms. The 3D urchin-like Pd@PtNi NSs will enrich the electrocatalysts for DAFCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.