Although REE (lanthanides + Sc + Y) mineralization in alkaline silicate systems is commonly accompanied with Zr mineralization worldwide, our understanding of the relationship between Zr and REE mineralization is still incomplete. The Baerzhe deposit in Northeastern China is a reservoir of REE, Nb, Zr, and Be linked to the formation of an Early Cretaceous, silica-saturated, alkaline intrusive complex. In this study, we use in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of zircon and monazite crystals to constrain the relationship between Zr and REE mineralization at Baerzhe. Three groups of zircon are identified and are differentiated based upon textural observations and compositional characteristics. Type Ia zircons display well-developed oscillatory zoning. Type Ib zircons are darker in cathodoluminescence images and have more irregular zoning and resorption features than type Ia zircons. In addition, type Ib zircons can locally occur as overgrowths on type Ia zircons. Type II zircons contain irregular but translucent cores and rims with oscillatory zoning that are murky brown in color and occur in aggregates. Textural features and compositional data suggest that types Ia and Ib zircon crystallized at the magmatic stage, with type Ia being least-altered and type Ib being strongly altered. Type II zircons, on the other hand, precipitated during the magmatic to magmatichydrothermal transition. Whereas the magnitude of the Eu anomaly is moderate in the barren alkaline granite, both magmatic and deuteric zircon exhibit pronounced negative anomalies. Such features are difficult to explain exclusively by feldspar fractionation and could indicate the presence of fluid induced modification of the rocks. Monazite crystals occur mostly through replacement of zircon and sodic amphibole; monazite clusters are also present. Textural and compositional evidence suggests that monazite at Baerzhe is hydrothermal. Types Ia and Ib magmatic zircon yield 207Pb-corrected 206Pb/238U ages of 127.2 ± 1.3 and 125.4 ± 0.7 Ma, respectively. Type II deuteric zircon precipitated at 124.9 ± 0.6 Ma. The chronological data suggest that the magmatic stage of the highly evolved Baerzhe alkaline granite lasted less than two million years. Hydrothermal monazite records a REE mineralization event at 122.8 ± 0.6 Ma, approximately 1 or 2 million years after Zr mineralization. We therefore propose a model in which parental magmas of the Baerzhe pluton underwent extensive magmatic differentiation while residual melts interacted with aqueous hydrothermal fluids. Deuteric zircon precipitated from a hydrosilicate liquid, and subsequent REE mineralization, exemplified by hydrothermal monazite, correlates with hydrothermal metasomatic alteration that postdated the hydrosilicate liquid event. Such interplay between magmatic and hydrothermal processes resulted in the formation of discrete Zr and REE mineralization at Baerzhe.
The newly discovered Zaorendao gold deposit is in the Tongren-Xiahe-Hezuo polymetallic district in the westernmost West Qinling orogenic belt. The estimated pre-mining resource is approximately 13.6 t of Au at an average grade of 3.02 g/t. Mineralization is predominantly controlled by NW-trending and EW-trending faults within diorite intrusions and surrounding sedimentary rocks. In the present study, in situ zircon U–Pb geochronology and Lu–Hf isotopic analyses of the ore-hosting diorite at Zaorendao were measured using LA-ICP-MS. The data suggest that the diorite was emplaced at ca. 246.5 ± 1.9 Ma. The large variation of zircon Hf isotopic composition (ɛHf(t) values ranging from −12.0 to −1.8) indicates a two-stage model age (TDM2) that ranges from 1.4 Ga to 2.0 Ga. Such Lu–Hf isotopic compositions indicate that the diorite was dominantly derived from a Paleo- to Meso-Proterozoic continental crust. The wide range of εHf(t) and the presence of inherited zircon can be interpreted to suggest the mixing of Paleo- to Meso-Proterozoic continental crust with a mantle component. Combining such characteristics with the geochemistry of coeval rocks that are associated with the diorite, we therefore proposed that the gold-hosting Triassic diorite in the Zaorendao gold deposit formed in an active continental margin that was associated with the northward subduction of the paleo-Tethyan ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.