Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic interaction with 80% of known land plants. It has a pronounced impact on plant growth, water absorption, mineral nutrition, and protection from abiotic stresses. Plants are very dynamic systems having great adaptability under continuously changing drying conditions. In this regard, the function of AMF as a biological tool for improving plant drought stress tolerance and phenotypic plasticity, in terms of establishing mutualistic associations, seems an innovative approach towards sustainable agriculture. However, a better understanding of these complex interconnected signaling pathways and AMF-mediated mechanisms that regulate the drought tolerance in plants will enhance its potential application as an innovative approach in environmentally friendly agriculture. This paper reviews the underlying mechanisms that are confidently linked with plant–AMF interaction in alleviating drought stress, constructing emphasis on phytohormones and signaling molecules and their interaction with biochemical, and physiological processes to maintain the homeostasis of nutrient and water cycling and plant growth performance. Likewise, the paper will analyze how the AMF symbiosis helps the plant to overcome the deleterious effects of stress is also evaluated. Finally, we review how interactions between various signaling mechanisms governed by AMF symbiosis modulate different physiological responses to improve drought tolerance. Understanding the AMF-mediated mechanisms that are important for regulating the establishment of the mycorrhizal association and the plant protective responses towards unfavorable conditions will open new approaches to exploit AMF as a bioprotective tool against drought.
Nitrogen (N) and phosphorus (P) often limit biological processes in terrestrial ecosystems. Based on previous studies mainly focusing on plants, the concept of resource limitation has evolved towards a theory of (co)limitations by multiple resources. However, this ecological framework has not been applied to analyse how soil micro‐organisms and plants concurrently respond to N and/or P addition, and whether these responses are constrained by phylogenetic relatedness. Here, we applied this framework to analyse microbial and plant responses at community and taxon levels to different fertilization treatments (four N levels without P; four P levels without N and four NP levels) in Tibetan grasslands. Total plant biomass showed serial limitation by N then P, and most plant species were limited by N only. Total archaeal abundance decreased with P addition, but diverse nutrient limitation types were observed for archaeal taxa. Closely related archaeal taxa tended to similarly respond to N, and functional similarity between distant archaeal groups was observed for response to P, possibly due to functional convergence. In contrast, total bacteria slightly increased with P addition only when plants remained N limited, whereas without N limitation, plants rather than bacteria benefited from P addition. Most bacterial taxa were limited by other resources than N and P, and no clear phylogenetic signals were observed regarding bacterial responses to N/P additions. Synthesis. We propose a novel approach for characterizing microbial response types to nutrient addition. It demonstrates that in Tibetan meadows, most dominant plant species, archaea and bacteria, respectively, depend on N, both N and P and other resources.
Arbuscular mycorrhizal fungi (AMF) form a mutualistic association with plant roots by improving phosphorus (P) uptake of the host plant. Previous studies demonstrated that AMF exert various influences on soil enzyme activity; however, quantification of these effects has not been published to date. This study explored the effect of AMF on soil enzyme activity by meta‐analysis of a current dataset. The AMF inoculation increased the activities of most soil enzymes, with the exception of polyphenol oxidase. Across all observations, AMF enhanced soil enzyme activity optimally at smaller soil available P and neutral soil pH conditions. This effect was positively correlated with the increasing ratios of soil available P and plant biomass. The results of this study indicate that AMF can enhance the release of soil nutrients required for plant growth in response to increased soil enzyme activity. The results obtained emphasize that the effect of AMF on soil enzyme activity is strongly abiotic context‐dependent and coupled with beneficial effects for plant growth. This has relevant implications for AMF application for sustainable agriculture.Highlights Meta‐analysis of 56 studies shows that AMF usually increase soil enzyme activity. Neutral pH and low available phosphorus lead to optimal AMF influence on soil enzyme activity. Plant growth promotion by AMF can lead to an increase of soil enzyme activity. AMF inoculation offers positive implications for agricultural application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.