An improved \three steps" mountain-climb searching (MCS) algorithm is proposed which is applied to auto-focusing for microscopic imaging accurately and e±ciently. By analyzing the performance of several evaluation functions, the variance function and the Brenner function are synthesized as a new evaluation function. In the¯rst step, a self-adaptive step length which is much dependent on the reciprocal of the evaluation function value at the beginning position of climbing is used for approaching the halfway up the mountain roughly. Secondly, a¯xed moderate step length is applied for approaching the mountaintop of the variance function as closer as possible. Finally, ā ne step is employed for reaching the exact mountaintop of the Brenner function. The microscope auto-focusing experiments based on the proposed algorithm for blood smear detection have been carried out comprehensively. The results show that the improved algorithm can not only guarantee the precision to get clear focal images, but also improve the auto-focusing e±ciency.
To determine the shape of a complex object with vertical measurement mode and higher accuracy, a novel modulation measuring profilometry realizing auto-synchronous phase shifting and vertical scanning is proposed. Coaxial optical system for projection and observation instead of triangulation system is adopted to avoid shadow and occlusion. In the projecting system, sinusoidal grating is perpendicular to optical axis. For moving the grating along a direction at a certain angle to optical axis, 1D precision translation platform is applied to achieve purposes of both phase-shifting and vertical scanning. A series of fringe patterns with different modulation variations are captured by a CCD camera while scanning. The profile of the tested object can be reconstructed by the relationship between the height values and the modulation distributions. Unlike the previous method based on Fourier transform for 2D fringe pattern, the modulation maps are calculated from the intensity curve formed by the points with definite pixel coordinates in the captured fringe patterns. The paper gives the principle of the proposed method, the set-up of measurement system and the method for system calibration. Computer simulation and experiment results proved its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.