Phonon scattering by nanostructures and point defects has become the primary strategy for minimizing the lattice thermal conductivity (κ ) in thermoelectric materials. However, these scatterers are only effective at the extremes of the phonon spectrum. Recently, it has been demonstrated that dislocations are effective at scattering the remaining mid-frequency phonons as well. In this work, by varying the concentration of Na in Pb Eu Te, it has been determined that the dominant microstructural features are point defects, lattice dislocations, and nanostructure interfaces. This study reveals that dense lattice dislocations (≈4 × 10 cm ) are particularly effective at reducing κ . When the dislocation concentration is maximized, one of the lowest κ values reported for PbTe is achieved. Furthermore, due to the band convergence of the alloyed 3% mol. EuTe the electronic performance is enhanced, and a high thermoelectric figure of merit, zT, of ≈2.2 is achieved. This work not only demonstrates the effectiveness of dense lattice dislocations as a means of lowering κ , but also the importance of engineering both thermal and electronic transport simultaneously when designing high-performance thermoelectrics.
A wide variety of industrial applications require materials with high strength and ductility. Unfortunately, the strategies for increasing material strength, such as processing to create line defects (dislocations), tend to decrease ductility. We developed a strategy to circumvent this in inexpensive, medium manganese steel. Cold rolling followed by low-temperature tempering developed steel with metastable austenite grains embedded in a highly dislocated martensite matrix. This deformed and partitioned (D and P) process produced dislocation hardening but retained high ductility, both through the glide of intensive mobile dislocations and by allowing us to control martensitic transformation. The D and P strategy should apply to any other alloy with deformation-induced martensitic transformation and provides a pathway for the development of high-strength, high-ductility materials.
ÃThe major scientific and technological advances and breakthroughs of advanced high strength steels (AHSS) were achieved due to the strong demands of automotive industry. The development of AHSS began in the early 1980s with the aim of improving passenger safety and weight-saving. The present paper presents the driving forces and logic of development of various AHSS for automotive applications since 1980s. The importance of crash performance, weight-saving, formability, and rigidity are critically reviewed for the development of new steel grades for automotive applications. The logical sequences of the development of dual phase (DP) steel, transformation induced plasticity (TRIP) steels, tempered DP steels, complex phases (CP) steels, Ferrite-Bainite steels, hot-stamping technology, twinning induced plasticity (TWIP) steels, Quench and Partitioning (Q&P) steels, Medium Mn steels, and steels-polymer composites are presented.
The work hardening behaviour of Fe-Mn-C twinning induced plasticity (TWIP) steels with a wide compositional range has been investigated. Based on the consideration that twinning provides a dynamic composite effect resulting in high work hardening rate in TWIP steels, the present work proposes a model to describe such behaviour as a function of chemical composition. The model predictions are in good agreement with experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.