Two-component systems (TCSs) are key elements in bacterial signal transduction in response to environmental stresses. TCSs generally consist of sensor histidine kinases (SKs) and their cognate response regulators (RRs). Many SKs exhibit autokinase, phosphoryltransferase and phosphatase activities, which regulate RR activity through a phosphorylation and dephosphorylation cycle. However, how SKs perform different enzymatic activities is poorly understood. Here, several crystal structures of the minimal catalytic region of WalK, an essential SK from Lactobacillus plantarum that shares 60% sequence identity with its homologue VicK from Streptococcus mutans, are presented. WalK adopts an asymmetrical closed structure in the presence of ATP or ADP, in which one of the CA domains is positioned close to the DHp domain, thus leading both the -and -phosphates of ATP/ADP to form hydrogen bonds to the "-but not the -nitrogen of the phosphorylatable histidine in the DHp domain. In addition, the DHp domain in the ATP/ADP-bound state has a 25.7 asymmetrical helical bending coordinated with the repositioning of the CA domain; these processes are mutually exclusive and alternate in response to helicity changes that are possibly regulated by upstream signals. In the absence of ATP or ADP, however, WalK adopts a completely symmetric open structure with its DHp domain centred between two outward-reaching CA domains. In summary, these structures of WalK reveal the intrinsic dynamic properties of an SK structure as a molecular basis for multifunctionality.
Oxidative stress affects RPE cell viability and proliferation through interfering with the EGFR/AKT signaling pathway. The EGFR/AKT signaling pathway may be an important target in oxidative stress-induced RPE cell dysfunction.
Abnormal survival of retinal pigment epithelium (RPE) cells contributes to the pathogenesis of proliferative vitreoretinopathy (PVR), a sight-threatening disease. In this study, we explored the effect of the anti-rheumatic agent auranofin (AF) on RPE cell survival and studied the underlying signaling mechanisms in vitro. Our results showed that AF inhibited ARPE-19 cell survival in a dose and time-dependent manner. Application of AF induced several effects: a significant decrease in total epidermal growth factor receptor (EGFR) and an increase in phosphorylated EGFR and mitogen-activated protein kinase (MAPK), including extracellular signal-regulated kinase (ERK), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), c-Jun, mitogen activated protein kinase activated protein kinase 2(MAPKAPK2), and heat shock protein 27 (HSP27). AF also inhibited epidermal growth factor (EGF)-dependent cell proliferation and migration through affecting EGFR/MAPK signaling. The antioxidant N-acetylcysteine (NAC) blocked the AF-induced increase of reactive oxygen species (ROS) production, the reduction of total EGFR, and the phosphorylation of multiple nodes in EGFR/MAPK signaling pathway. P38MAPK inhibitor SB203580, but not inhibitors of EGFR (erlotinib), ERK (FR180204) and JNK (SP600125), suppressed AF-induced phosphorylation of EGFR/p38MAPK/MAPKAPK2/Hsp27. In conclusion, the ROS-dependent phosphorylation of EGFR/MAPK is an important signaling pathway for AF-induced inhibition of RPE cell survival, and AF may have the potential for treatment of abnormal survival of RPE cells in PVR.
Resonance Raman (RR) spectra and quantum chemical calculations were used to investigate the photodissociation dynamics of propanil in the S2 state. The RR spectra indicate that the photorelaxation dynamics for the S0 → S2 excited state of propanil is predominantly along nine motions: C═O stretch, ν51 (1659 cm(-1)), ring C═C stretch, ν50 (1590 cm(-1)), NH wag/ring C═C stretch, ν49 (1534 cm(-1)), ring CCH in-plane bend/NH wag, ν42 (1383 cm(-1)), NH wag/-CH2- rock, ν41 (1353 cm(-1)), ring C═C stretch/NH wag/-CH2- rock in-plane, ν40 (1299 cm(-1)), Ph-NH stretch/ring CCH in-plane bend, ν37 (1236 cm(-1)), ring CCH in-plane bend, ν35 (1150 cm(-1)), -CH2CH3 twist, ν33 (1080 cm(-1)), ring trigonal bend, ν31 (1029 cm(-1)), ring CCH bend out-of-plane, ν27 (899 cm(-1)), whole skeleton deformation in-plane, ν20(688 cm(-1)). Strong electron coupling between S1 and S2 of propanil is found by quantum chemistry calculations and depolarization spectra. The excited-state dynamics of the S2 state is discussed, and the results are compared with the previously reported results for formanilide to examine the Cl substitution effect.
Resonance Raman spectra (RRs) and quantum chemical calculations were used to investigate the photodissociation dynamics of diuron in S2 state. The RRs indicate that the photorelaxation dynamics for the S0 → S2 excited state is predominantly along nine motions: the ring C = C stretch vibration ν12 (1593 cm−1), Ph–N–H wag ν14 (1517 cm−1), CO–N(CH3)2 stretch ν23 (1365 cm−1), CCH wag in plane/ring C = C stretch ν24 (1297 cm−1), ring CH rock in plane/ring deformation ν27 (1233 cm−1), CCH wag in plane ν29 (1151 cm−1), Ph–Cl (para) stretch ν35 (1028 cm−1), Ph–N–H wag ν37 (913 cm−1) and ring breath ν44 (685 cm−1). Dissociation by Ph–Cl (para) cleavage at S2 state directly or relaxation to T2 state by internal conversion (S2 → S1) and intersystem crossing (S1/T2) is expected by ~250 nm irradiation based on the RRS, complete active space self‐consistent field, configuration interaction singles and time‐dependent density functional theory calculations. Copyright © 2012 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.