Intervention strategies are urgently needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here we report two cryo-EM structures, derived from a preparation of the full-length S protein, representing its prefusion (2.9Å resolution) and postfusion (3.0Å resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide development of vaccines and therapeutics.
The global COVID-19 pandemic caused by the SARS-CoV-2 virus has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 Spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. Following vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates.
A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic 1 – 8 . For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in nonhuman primates. 52 rhesus macaques were immunized with Ad26 vectors encoding S variants or sham control and were challenged with SARS-CoV-2 by the intranasal and intratracheal routes 9 , 10 . The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs following SARS-CoV-2 challenge. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in nonhuman primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.
The ongoing SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic has created urgent needs for intervention strategies to control the crisis. The spike (S) protein of the virus forms a trimer and catalyzes fusion between viral and target cell membranes -the first key step of viral infection. Here we report two cryo-EM structures, both derived from a single preparation of the full-length S protein, representing the prefusion (3.1Å resolution) and postfusion (3.3Å resolution) conformations, respectively.The spontaneous structural transition to the postfusion state under mild conditions is independent of target cells. The prefusion trimer forms a tightly packed structure with three receptor-binding domains clamped down by a segment adjacent to the fusion peptide, significantly different from recently published structures of a stabilized S ectodomain trimer. The postfusion conformation is a rigid tower-like trimer, but decorated by N-linked glycans along its long axis with almost even spacing, suggesting possible involvement in a mechanism protecting the virus from host immune responses and harsh external conditions. These findings advance our understanding of how SARS-CoV-2 enters a host cell and may guide development of vaccines and therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.