Intervention strategies are urgently needed to control the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here we report two cryo-EM structures, derived from a preparation of the full-length S protein, representing its prefusion (2.9Å resolution) and postfusion (3.0Å resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide development of vaccines and therapeutics.
The ongoing SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic has created urgent needs for intervention strategies to control the crisis. The spike (S) protein of the virus forms a trimer and catalyzes fusion between viral and target cell membranes -the first key step of viral infection. Here we report two cryo-EM structures, both derived from a single preparation of the full-length S protein, representing the prefusion (3.1Å resolution) and postfusion (3.3Å resolution) conformations, respectively.The spontaneous structural transition to the postfusion state under mild conditions is independent of target cells. The prefusion trimer forms a tightly packed structure with three receptor-binding domains clamped down by a segment adjacent to the fusion peptide, significantly different from recently published structures of a stabilized S ectodomain trimer. The postfusion conformation is a rigid tower-like trimer, but decorated by N-linked glycans along its long axis with almost even spacing, suggesting possible involvement in a mechanism protecting the virus from host immune responses and harsh external conditions. These findings advance our understanding of how SARS-CoV-2 enters a host cell and may guide development of vaccines and therapeutics.
Summary The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.