This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Colorectal cancer (CRC), as a malignant tumor of lower digestive tract, has been found to have an increasing morbidity and mortality in China. It was particularly important to find some earlier biomarkers to predict the risk and prognosis. In this study, several polymorphisms on 3′UTR of three DNA repair genes including MLH3 rs10862, ERCC1 rs3212986, ERCC1 rs735482, ERCC1 rs2336219, and OGG1 rs1052133 were chosen by bioinformatics exploration, and then, a case–control study of 200 CRC cases and controls was performed. Furthermore, a dual‐luciferase assay was also carried out to certify whether the candidate miRNA can regulate its target gene and the selected SNPs have a valid effect on the target miRNA. Finally, both of ERCC1 rs3212986 and MLH3 rs108621 were shown to be associated with the risk of CRC. Comparing with rs3212986 CC genotype, AA was at a higher risk (OR = 3.079, 95% CI: 1.192–7.952). For MLH3 rs108621, comparing with TT genotype, CC and TC were at a higher risk of CRC in male (OR = 5.171, 95% CI: 1.009–26.494; OR = 1.904, 95% CI: 1.049–3.455). Interestingly, an analysis combining both ERCC1 rs3212986 and MLH3 rs108621 also showed an increased risk of CRC. In addition, a dual‐luciferase assay showed that miR‐193a‐3p could regulate MLH3, and the polymorphism rs108621 could alter the miR‐193a‐3p binding to MLH3. Therefore, MLH3 rs108621 may be associated with the risk of CRC due to the effect of miR‐193a‐3p on MLH3, which reminded the possibility as potential susceptibility biomarkers to predict the risk of CRC.
Single nucleotide polymorphisms (SNPs) in 3′UTR of key DNA repair enzyme genes are associated with inter‐individual differences of DNA repair capacity (DRC) and susceptibility to a variety of human malignancies such as lung cancer. In this study, seven candidate SNPs in 3′UTR of DRC‐related genes including ERCC1 (rs3212986, rs2336219, and rs735482), OGG1 (rs1052133), MLH3 (rs108621), CD3EAP (rs1007616), and PPP1R13L (rs6966) were analyzed in 300 lung cancer patients and controls from the northeast of China. Furthermore, we introduced ERCC1 (CDS+3′UTR) or CD3EAP (CDS) cDNA clone to transfect HEK293T and 16HBE cells. Cell viability between different genotypes of transfected cells exposed to BPDE was detected by CCK‐8 assay, while DNA damage was visualized using γH2AX immunofluorescence and the modified comet assay. We found that minor A‐allele of rs3212986 could reflect a linkage with increasing risk of NSCLC. Compared with CC genotype, AA genotype of ERCC1 rs3212986 was a high‐risk factor for NSCLC (OR = 3.246; 95%CI: 1.375‐7.663). Particularly stratified by smoking status in cases and controls, A allele of ERCC1 rs3212986 also exhibited an enhanced risk to develop lung cancer in smokers only (P < 0.05). Interestingly, reduced repair efficiency of DNA damage was observed in 293T ERCC1(AA) and 16HBE ERCC1(AA), while no significant difference was appeared in two genotypes of CD3EAP (3′ adjacent gene of ERCC1) overexpressed cells. Our findings suggest that rs3212986 polymorphism in 3ʹUTR of ERCC1 overlapped with CD3EAP may affect the repair of the damage induced by BPDE mainly via regulating ERCC1 expression and become a potential biomarker to predict smoking‐related lung cancer.
Lung cancer is one of the most devastating tumors with a high incidence and mortality worldwide. Polymorphisms and expression of
ERCC1
commonly predicted the occurrence and prognosis of lung cancer. However, few studies have focused on long non-coding RNAs related to
ERCC1
though some studies reminded the importance of its post-transcriptional regulation. In the present study, an intronic lncRNA AC138128.1 originated from
ERCC1
was firstly identified in microarray chip and database, and its possibility as a novel biomarker to predict lung cancer treatment was further discussed. Firstly, the qRT-PCR data showed that AC138128.1 expression was much lower in lung cancer comparing with its para-cancer tissues, which further analyzed by ROC curve. Similarly, the difference was also verified in 16HBE, A549 and LK
2
cells. Then AC138128.1 expression was found to have an increasing trend in a dose or time-dependent manner after cisplatin treatment. Finally, the subcellular distribution of AC138128.1 reminded that AC138128.1 was mainly expressed in the nucleus. Interestingly a positive relationship between AC138128.1 and
ERCC1
expression was only found in cancer tissues, which reminded AC138128.1 may be involved in the regulation of ERCC1. Therefore, as a preliminary exploration of the lncRNA originated from
ERCC1
, the present study suggested AC138128.1 is of potential value in predicting platinum analogue benefit in lung cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.