Summary In vertebrate vision, the tetrachromatic larval zebrafish permits non-invasive monitoring and manipulating of neural activity across the nervous system in vivo during ongoing behavior. However, despite a perhaps unparalleled understanding of links between zebrafish brain circuits and visual behaviors, comparatively little is known about what their eyes send to the brain via retinal ganglion cells (RGCs). Major gaps in knowledge include any information on spectral coding and information on potentially critical variations in RGC properties across the retinal surface corresponding with asymmetries in the statistics of natural visual space and behavioral demands. Here, we use in vivo two-photon imaging during hyperspectral visual stimulation as well as photolabeling of RGCs to provide a functional and anatomical census of RGCs in larval zebrafish. We find that RGCs’ functional and structural properties differ across the eye and include a notable population of UV-responsive On-sustained RGCs that are only found in the acute zone, likely to support visual prey capture of UV-bright zooplankton. Next, approximately half of RGCs display diverse forms of color opponency, including many that are driven by a pervasive and slow blue-Off system—far in excess of what would be required to satisfy traditional models of color vision. In addition, most information on spectral contrast was intermixed with temporal information. Taken together, our results suggest that zebrafish RGCs send a diverse and highly regionalized time-color code to the brain.
The medial septum is anatomically and functionally linked to the hippocampus, a region implicated in nociception. However, the role of medial septum in nociception remains unclear. To investigate the role of the region in nociception in rats, muscimol, a GABA agonist, or zolpidem, a positive allosteric modulator of GABA(A) receptors, was microinjected into medial septum to attenuate the activity of neurons in the region. Electrophysiological studies in anesthetized rats indicated that muscimol evoked a stronger and longer-lasting suppression of medial septal-mediated activation of hippocampal theta field activity than zolpidem. Similarly, microinjection of muscimol (1 or 2 μg/0.5 μl) into the medial septum of awake rats suppressed both licking and flinching behaviors in the formalin test of inflammatory pain, whereas only the latter behavior was affected by zolpidem (8 or 12 μg/0.5 μl) administered into the medial septum. Interestingly, both drugs selectively attenuated nociceptive behaviors in the second phase of the formalin test that are partly driven by central plasticity. Indeed, muscimol reduced the second phase behaviors by 30% to 60%, which was comparable to the reduction seen with systemic administration of a moderate dose of the analgesic morphine. The reduction was accompanied by a decrease in formalin-induced expression of spinal c-Fos protein that serves as an index of spinal nociceptive processing. The drug effects on nociceptive behaviors were without overt sedation and were distinct from the effects observed after septal lateral microinjections. Taken together, these findings suggest that the activation of medial septum is pro-nociceptive and facilitates aspects of central neural processing underlying nociception.
In vertebrate vision, the tetrachromatic larval zebrafish permits non-invasive monitoring and manipulating of neural activity across the nervous system in vivo during ongoing behaviour. However, despite a perhaps unparalleled understanding of links between zebrafish brain circuits and visual behaviours, comparatively little is known about what their eyes send to the brain in the first place via retinal ganglion cells (RGCs). Major gaps in knowledge include any information on spectral coding, and information on potentially critical variations in RGC properties across the retinal surface to acknowledge asymmetries in the statistics of natural visual space and behavioural demands.Here, we use in vivo two photon (2P) imaging during hyperspectral visual stimulation as well as photolabeling of RGCs to provide the first eye-wide functional and anatomical census of RGCs in larval zebrafish.We find that RGCs' functional and structural properties differ across the eye and include a notable population of UV-responsive On-sustained RGCs that are only found in the acute zone, likely to support visual prey capture of UV-bright zooplankton. Next, approximately half of RGCs display diverse forms of colour opponency -long in excess of what would be required to satisfy traditional models of colour vision. However, most information on spectral contrast was intermixed with temporal information. To consolidate this series of unexpected findings, we propose that zebrafish may use a novel "dual-achromatic" strategy segregated by a spectrally intermediate background subtraction system. Specifically, our data is consistent with a model where traditional achromatic image-forming vision is mainly driven by longwavelength sensitive circuits, while in parallel UV-sensitive circuits serve a second achromatic system of foreground-vision that serves prey capture and, potentially, predator evasion.
ABSTACT. In neuroscience, diffraction limited two-photon (2P) microscopy is a cornerstone technique that permits minimally invasive optical monitoring of neuronal activity. However, most conventional 2P microscopes impose significant constraints on the size of the imaging field-of-view and the specific shape of the effective excitation volume, thus limiting the scope of biological questions that can be addressed and the information obtainable. Here, employing 'divergent beam optics' (DBO), we present an ultra-low-cost, easily implemented and flexible solution to address these limitations, offering a several-fold expanded three-dimensional field of view that also maintains single-cell resolution. We show that this implementation increases both the space-bandwidth product and effective excitation power, and allows for straight-forward tailoring of the point-spread-function. Moreover, rapid laser-focus control via an electrically tunable lens now allows near-simultaneous imaging of remote regions separated in three dimensions and permits the bending of imaging planes to follow natural curvatures in biological structures. Crucially, our core design is readily implemented (and reversed) within a matter of hours, and fully compatible with a wide range of existing 2P customizations, making it highly suitable as a base platform for further development. We demonstrate the application of our system for imaging neuronal activity in a variety of examples in mice, zebrafish and fruit flies.
Background: Dietary disinhibition is a behavioral trait associated with weight gain and obesity. Because food choices are made according to the relative value assigned to each option, examination of valuation signals through functional magnetic resonance imaging (fMRI) may elucidate the neural basis for the association between dietary disinhibition and weight gain. Objective: We examined how food valuation signals differ in the fed and fasted states between persons with high dietary disinhibition (HD) and low dietary disinhibition (LD). Design: Sixteen men with HD and 14 with LD underwent fMRI once while fasted and once after being fed in a counterbalanced order. In-scanner preference to consume a test food relative to a neutral-tasting, neutral-health reference food was examined. The slope of magnetic resonance signal change corresponding to these food preferences constituted the food valuation signal that was compared across disinhibition group and satiety state. Results: Both the HD and LD participants reported being less hungry (F (1,28) = 113.11, P , 0.001) after being fed than when fasted. However, food valuation signals in the ventromedial prefrontal cortex (vmPFC) differed between the groups (F (1,28) = 21.34, P , 0.001). Although LD participants showed attenuated vmPFC activity after being fed (t (13) = 4.11, P , 0.001), HD participants showed greater vmPFC activity in the fed than in the fasted state (t (15) = 22.56, P , 0.05). Conclusions: Despite reporting normal decreases in hunger ratings after being fed, persons with HD have an altered neural valuation of food. This may be a mechanism underlying their propensity to overeat and gain weight. This trial was registered at clinicaltrials. gov as NCT00988819.Am J Clin Nutr 2013;97:919-25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.