Having a photocatalyzed characteristic, our previous research had proved that nano-anatase TiO2 is closely related to the photosynthesis of spinach. It could not only improve the light absorbance and the transformation from light energy to electron energy and to active chemical energy but also promote carbon dioxide (CO2) assimilation of spinach. However, the mechanism of carbon reaction promoted by nano-anatase TiO2 remains largely unclear. By electrophoresis and Western blot methods, the results of the experiments proved that Rubisco from the nano-anatase TiO2-treated spinach during the extraction procedure of Rubisco was found to consist of Rubisco and a heavier molecular-mass protein (about 1,200 kDa) comprising both Rubisco and Rubisco activase. The Rubisco carboxylase activity was 2.67 times that of Rubisco from the control and it could hydrolyze ATP in the same manner as Rubisco activase. The total sulfhydryl groups and available sulfhydryl groups of the Rubisco were 32 -SH and 21 -SH per mole of enzyme more than those of the Rubisco purified from the control, respectively. The circular dichroism spectra showed that the secondary structure of Rubisco from the nano-anatase TiO2-treated spinach was very different from Rubisco of the control. It suggested that the mechanism of nano-anatase TiO2 activating Rubisco of spinach was that the complex of Rubsico and Rubisco activase was induced in spinach, which promoted Rubsico carboxylation and increased the rate of photosynthetic carbon reaction.
The improvement of spinach growth is proved to relate to N2 fixation by nano-anatase TiO2 in this study. The results show that all spinach leaves kept green by nano-anatase TiO2 treatment and all old leaves of control turned yellow white under culture with N-deficient solution. And the fresh weight, dry weight, and contents of total nitrogen, NH4(+), chlorophyll, and protein of spinach by nano-anatase TiO2 treatment presented obvious enhancement compared with control. Whereas the improvements of yield of spinach were not as good as nano-anatase TiO2 treatment under N-deficient condition, confirming that nano-anatase TiO2 on exposure to sunlight could chemisorb N2 directly or reduce N2 to NH3 in the spinach leaves, transforming into organic nitrogen and improving the growth of spinach. Bulk TiO2 effect, however, was not as significant as nano-anatase TiO2. A possible metabolism of the function of nano-anatase TiO2 reducing N2 to NH3 was discussed.
A proven photocatalyst, titanium dioxide in the form of nano-anatase, is capable of undergoing electron transfer reactions under light. In previous studies, we had proven that nano-anatase could absorb ultraviolet light (UV-B) and convert light energy to stable chemistry energy finally via electron transport in spinach chloroplasts. The mechanisms by which nano-anatase promotes antioxidant stress in spinach chloroplasts under UV-B radiation are still not clearly understood. In the present paper, we investigate the effects of nano-anatase on the antioxidant stress in spinach chloroplasts under UV-B radiation. The results showed that nano-anatase treatment could significantly decrease accumulation of superoxide radicals O2.-, hydrogen peroxide (H2O2), and malonyldialdehyde (MDA) content, and increase activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and elevate evolution oxygen rate in spinach chloroplasts under UV-B radiation. Together, nano-anatase could decrease the oxidative stress to spinach chloroplast caused by UV-B radiation.
Characterized by a photo-catalysis property, nano-anatase TiO(2) is closely related to photosynthesis of spinach. It could not only improve light absorbance, transformation from light energy to electron energy and active chemical energy, but also promote the activity of Rubiso activase of spinach. However, the relation between the activity of Rubiso activase and the growth of spinach promoted by nano-anatase TiO(2) treatment remains largely unclear. In this study, we find that the amount and the activity of Rubiso activase are obviously increased by nano-anatase TiO(2 )treatment, which led to the great promotion of Rubsico carboxylation and the high rate of photosynthesis, thus improving of spinach growth. The significant enhancement of Rubiso activase activity of nano-anatase TiO(2 )treated spinach is also accompanied by conformational changes as determined by spectroscopic analysis. But bulk TiO(2) effect is not as significant as nano-anatase TiO(2), as the grain size of nano-anatase TiO(2) (5 nm) is much smaller than that of bulk TiO(2), which entered spinach cell more easily.
With a photocatalyzed characteristic, nanoanatase TiO2 under light could cause an oxidation-reduction reaction. Our studies had proved that nano-TiO2 could promote photosynthesis and greatly improve spinach growth. However, the mechanism of nano-TiO2 on promoting conversion from light energy to electron energy and from electron energy to active chemistry energy remains largely unclear. In this study, we report that the electron transfer, oxygen evolution, and photophosphorylation of chloroplast (Chl) from nanoanatase-TiO2-treated spinach were greatly increased under visible light and ultraviolet light illumination. It was demonstrated that nanoanatase TiO2 could greatly improve whole chain electron transport, photoreduction activity of photosystem II, O2-evolving and photophosphorylation activity of spinach Chl not only under visible light, but also energy-enriched electron from nanoanatase TiO2, which entered Chl under ultraviolet light and was transferred in photosynthetic electron transport chain and made NADP+ be reduced into NADPH, and coupled to photophosphorylation and made electron energy be transformed to ATP. Moreover, nanoanatase h+, which photogenerated electron holes, captured an electron from water, which accelerated water photolysis and O2 evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.