Hepatocellular carcinoma (HCC) is a common liver malignancy worldwide accompanying with the high rate of recurrence. Accumulating reports have documented the significance of circular RNAs (circRNAs) in carcinogenesis and development of HCC. This study aimed to establish the mechanism underlying circ‐HOMER1 involvement in HCC. To this end, we identified a binding site for miR‐1322 via bioinformatics, quantitative reverse transcriptase‐polymerase chain reaction (qRT‐PCR), and dual‐luciferase reporter assays providing evidence of a direct link between circ‐HOMER1 and miR‐1322. Similarly, the target gene of miR‐1322 was investigated. Moreover, we determined the specific function of circ‐HOMER1 in HCC with the aid of qRT‐PCR based on patient clinical records, Cell Counting Kit‐8, acridine orange/ethidium bromide double fluorescence staining, flow cytometry, and wound‐healing and transwell assays. Notably, circ‐HOMER1 was upregulated in both HCC cells and tissues. This aberrant expression pattern was closely correlated with larger tumor size, higher tumor‐node‐metastasis stage, and poorer prognosis for the patients with HCC. Moreover, silenced circ‐HOMER1 inhibited cell proliferation, migration, and invasion concomitant with the promotion of apoptosis in HCC cells, and vice versa. Mechanistically, circ‐HOMER1 enhanced the inhibition of miR‐1322 on CXCL6 in HCC. Furthermore, we found that circ‐HOMER1 promoted HCC cell growth and aggressiveness by miR‐1322/CXCL6 axis. This study may provide a potential prognostic indicator and therapeutic target for patients with HCC.
Oleanolic acid (OA), a naturally occurring pentacyclic triterpenoid contained in a variety of plant species, exhibits broad biological properties, including anticancer effects. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia. APL has a unique and specific chromosomal aberration, t(15;17), which results in the formation of a fusion gene and protein PML/RARα, which is not only necessary for the diagnosis of APL, but is also critical for APL pathogenesis. In the present study, the cytotoxic effect of OA on NB4 cells was investigated. Cell viability was assessed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of bax and bcl-2 mRNA were determined by quantitative PCR. Apoptosis was analyzed using DNA fragment analysis and cell cycle distributions were analyzed by flow cytometry. The activity of caspase-3 and caspase-9 was determined by colorimetric assays. The expression of the PML/RARα fusion protein was analyzed by western blotting. The MTT assay showed that OA inhibited the proliferation of the NB4 cells. The expression levels of pro-apoptotic bax mRNA were increased and the levels of anti-apoptotic bcl-2 mRNA were decreased following the treatment of the NB4 cells with OA at 80 μmol/l. Treatment of the NB4 cells with OA at 80 μmol/l induced apoptosis and G1 phase arrest, while caspase-9 and caspase-3 activity was significantly increased. Furthermore, the expression of the PML/RARα fusion protein was decreased. Together, these data suggest that OA exerts a cytotoxic effect that inhibits proliferation and induces apoptosis in NB4 cells by targeting PML/RARα, making it a potent therapeutic agent against leukemia.
Deep vein thrombosis (DVT) is a vascular disease. The long non-coding RNA (lncRNA), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is positively expressed in DVT tissues, and regulates the biological behavior of endothelial progenitor cells. Here, we explored whether MALAT1 affected the physiology of human vascular endothelial cells (HUVECs) and analyzed its underlying mechanism. To overexpress/silence the expression of MALAT1 in HUVECs, MALAT1-plasmid/MALAT1-small interfering RNA (siRNA) was used. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and flow cytometry analyses were performed to observe the cell viability and apoptosis. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to determine the apoptosis-related protein and gene expression levels. We used Starbase software to predict the associations among MALAT1, microRNA (miR)-383-5p, and BCL2-like 11 (BCL2L11). Luciferase reporter assay was used to validate their relationship. Compared to the control vector group, MALAT1-plasmid suppressed the viability and induced apoptosis of HUVECs, while improving Bcl-2-associated X protein (Bax) expression and decreasing Bcl-2 expression. There was an interaction between MALAT1 and miR-383-5p. Compared to the control siRNA group, MALAT1-siRNA increased the cell viability, reduced cell apoptosis, upregulated Bcl-2 expression, and suppressed Bax expression. These changes were reversed by the miR-383-5p inhibitor. Additionally, we verified that BCL2L11 is a target of miR-383-5p. miR-383-5p improved the cell proliferation, while decreasing cell apoptosis in HUVECs by targeting BCL2L11. Therefore, the lncRNA-MALAT1/miR-383-5p/BCL2L11 axis may be effective for DVT treatment.
This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group ( p = 0.003 ) 6 months after operation ( p = 0.047 ) and 12 months after operation ( p = 0.011 ). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.
To explore both the relationship between parenting style and the pro-bullying behavior of junior high school students and the roles of peer relationship and deviant peer interaction in that relationship. The parenting style questionnaire, peer relationship questionnaire, deviant peer interaction questionnaire, and pro-bullying behavior questionnaire were used to survey 886 junior high school students in China. A SPSS statistical package (26.0) was used for data analysis. Parenting style, peer relationship, deviant peer interaction, and pro-bullying behavior were all significantly correlated. Peer relationship and deviant peer interaction played complete mediating roles respectively between parenting style and pro-bullying behavior. Peer relationship and deviant peer interaction played a chain-type mediating role between style and pro-bullying behavior. Parenting style is an important parenting factor in pro-bullying behavior, indirectly affecting junior high school students’ pro-bullying behavior by influencing their peer relationship and deviant peer interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.