Biodegradable metals are promising candidates for bone defect repair. With an evidence-based approach, this study investigated and analyzed the performance and degradation properties of biodegradable metals in animal models for bone defect repair to explore their potential clinical translation. Animal studies on bone defect repair with biodegradable metals in comparison with other traditional biomaterials were reviewed. Data was carefully collected after identification of population, intervention, comparison, outcome, and study design (PICOS), and following the inclusion criteria of biodegradable metals in animal studies. 30 publications on pure Mg, Mg alloys, pure Zn and Zn alloys were finally included after extraction from a collected database of 2543 publications. A qualitative systematic review and a quantitative meta-analysis were performed. Given the heterogeneity in animal model, anatomical site and critical size defect (CSD), biodegradable metals exhibited mixed effects on bone defect repair and degradation in animal studies in comparison with traditional non-degradable metals, biodegradable polymers, bioceramics, and autogenous bone grafts. The results indicated that there were limitations in the experimental design of the included studies, and quality of the evidence presented by the studies was very low. To enhance clinical translation of biodegradable metals, evidence-based research with data validity is needed. Future studies should adopt standardized experimental protocols in investigating the effects of biodegradable metals on bone defect repair with animal models.
Based on the published animal studies, we systematically evaluated the outcomes of various materials for rotator cuff repair in animal models and the potentials of their clinical translation. 74 animal studies were finally included, of which naturally derived biomaterials were applied the most widely (50.0%), rats were the most commonly used animal model (47.0%), and autologous tissue demonstrated the best outcomes in all animal models. The biomechanical properties of naturally derived biomaterials (maximum failure load: WMD 18.68 [95%CI 7.71–29.66]; P = 0.001, and stiffness: WMD 1.30 [95%CI 0.01–2.60]; P = 0.048) was statistically significant in the rabbit model. The rabbit model showed better outcomes even though the injury was severer compared with the rat model.
Objective: In recent years, there are several systematic reviews published on animal experiments of Traditional Chinese medicine (TCM). PRISMA (preferred reporting items for systematic reviews and meta-analysis) guidelines provide a guarantee for significantly improving the reporting quality of systematic reviews (SRs) and metaanalysis (MAs) to a certain extent; however, there are still certain defects found in the quality of SRs/MAs of animal experiments of TCM. It has been found that especially, the descriptions of the rationale and animal characteristics of TCM interventions are inadequate. As a result, we have developed a novel reporting guideline for SRs/MAs of animal experimental in the field of TCM (PRISMA-ATCM) to overcome these problems.Methods: PRISMA-ATCM reporting guidelines were formed by analyzing both the status and quality of published SRs/MAs of animal experiments and consulting experts in the related fields, and then by Delphi consultation, consensus meeting and revision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.