Flexible electronics with great functional characteristics have proved to be a stepping stone in the field of wearable devices. Amongst all, gesture-sensing techniques have been widely studied for human-machine interfaces. In this paper, we propose a self-powered gesturesensing system attached to the back of the hands, which has the capability of distinguishing hand gestures by measuring the triboelectric nanogenerator output signal. By attaching the sensor on the back of the hand, we can sense the displacement of tendons to detect the gestures. In addition, humidity resistance and durability of the device were tested and validated. Furthermore, we have established a set of rules to define the relationship between gestures and corresponding English letters. Therefore, the proposed sensor can further serve as an electronic sign language translator by converting gestures into words. Finally, we can integrate this system into gloves to enhance the applicability and utility. Overall, we have developed a real-time self-powered back-of-hand sensing system which can recognize various hand gestures.
Hanseniaspora uvarum, a non-Saccharomyces cerevisiae species, has a crucial effect on the aroma characteristics of fruit wines, thus, attracting significant research interest in recent years. In this study, H. uvarum–Saccharomyces cerevisiae mixed fermentation was used to ferment Rosa roxburghii Tratt, blueberry fruit wine, and plum fruit wines using either a co-inoculated or a sequentially inoculated approach. The three fruit wines’ volatile aroma characteristics were analyzed by headspace–solid-phase microextraction–gas chromatography-mass spectrometry (HS–SPME–GC–MS). The results showed that the mixed inoculation of H. uvarum and S. cerevisiae reduced the alcoholic content of Kongxinli fruit wine. Moreover, H. uvarum–S. cerevisiae fermented Rosa roxburghii Tratt, blueberry, and plum fruit wines and further enriched their flavor compounds. The overall flavor characteristics of sequentially inoculated fruit wines differed significantly from those fermented with S. cerevisiae alone, although several similarities were also observed. Sequential inoculation of H. uvarum and S. cerevisiae positively affected the mellowness of the wine and achieved a better harmony of the overall wine flavors. Therefore, H. uvarum–Saccharomyces cerevisiae mixed fermentation can improve the complexity of the wines’ aromatic composition and empower them with a unique identity. In particular, H. uvarum–Saccharomyces cerevisiae blueberry wine produced by mixed fermentation had the widest variety and content of aroma compounds among the fermented wines. Therefore, H. uvarum–Saccharomyces cerevisiae mixed-fermentation inoculation in the three fermented fruit wines significantly increased the aroma compound variety and content, thus, enriching their aroma richness and complexity. This study is the first comparative evaluation of the aroma characteristics of different fruit wines fermented with a mixed inoculation of H. uvarum and S. cerevisiae and provides a preliminary guide for these fruit wines produced with non-Saccharomyces yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.