Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners) and can engage in tunable high-fidelity interactions. Examples include metal coordination and host-guest interactions as well as hydrogen bonding and DNA hybridization. On the colloidal scale, these interactions can be used to drive the reversible formation of open structures. Key to the design is the ability to covalently conjugate supramolecular motifs onto the particle surface and/or noncovalently associate with small molecules that can mediate and direct assembly. Efforts exploiting the binding strength inherent to DNA hybridization for the preparation of reversible open-packed structures are then detailed. We describe strategies that led to the introduction of dual-responsive DNA-mediated orthogonal assembly as well as colloidal clusters that afford distinct DNA-ligated close-packed lattices. Further focus is placed on two essential and related efforts: the engineering of complex superstructures that undergo phase transitions and colloidal crystals featuring a high density of functional anchors that aid in crystallization. The design principles disc...
A facile method to synthesize shape-shifting patchy particles on the colloidal scale is described. The design is based on the solvent-induced shifting of the patch shape between concave and convex features. The initial concave patchy particles were synthesized in a water suspension by a swelling-induced buckling process. Upon exposure to different solvents, the patches were tuned reversibly to be either concave or convex. These particles can be assembled into chained, branched, zigzag, and cyclic colloidal superstructures in a highly site-specific manner by surface-liquid capillary bridging. The biphasic nature of the particles also enables site-selective surface functionalization.
Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D-printed LCEs are thermally actuated. Herein, a 3D-printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D-printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near-infrared (NIR) light (808 nm) at 1.4 W cm −2 (corresponding to 160 °C) under optimal printing conditions. The 3D-printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light-responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s −1 (on a flat surface) and 0.216 mm s −1 (on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm).
This contribution describes a synthetic strategy for the fabrication of multicomponent colloidal “molecules” with controllable complex morphologies and compositionally distinct lobes. Using 3-(trimethoxysilyl)propyl methacrylate (TPM) as the building block, the methodology enables a scalable bulk synthesis of customized chiral colloidal particles with geometric and compositional chirality by a sequential seeded growth method. The synthetic protocol presents a versatile platform for constructing colloidal molecules with multiple components having customized shapes and functionalities, with the potential to impact the design of chromatic patchy particles, colloidal swimmers, and chiral optical materials, as well as informing programmable assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.