Six new heteroaromatic polycyclic azaborine chromophores were designed, synthesized, and investigated as easily tunable high-luminescent organic materials. The impact of the nitrogen-boron-hydroxy (N-BOH) unit in the azaborines was investigated by comparison with their N-carbonyl analogs. Insertion of the N-B(OH)-C unit into heteroaromatic polycyclic compounds resulted in strong visible absorption and sharp fluorescence with efficient quantum yields. The solid-state fluorescence of the heteroaromatic polycyclic compounds displayed a large Stokes shift compared to being in solution. The large Stokes shifts observed offset the self-quench effect in the solid state.
This contribution describes a synthetic strategy for the fabrication of multicomponent colloidal “molecules” with controllable complex morphologies and compositionally distinct lobes. Using 3-(trimethoxysilyl)propyl methacrylate (TPM) as the building block, the methodology enables a scalable bulk synthesis of customized chiral colloidal particles with geometric and compositional chirality by a sequential seeded growth method. The synthetic protocol presents a versatile platform for constructing colloidal molecules with multiple components having customized shapes and functionalities, with the potential to impact the design of chromatic patchy particles, colloidal swimmers, and chiral optical materials, as well as informing programmable assembly.
This article describes a series of modern developments carried out by the inkjet community in its quest to improve material compatibility, printing quality, and reliability. Recent progresses in rheology have advanced our understanding of liquids at the time scales that are characteristic of inkjet printing processes. As a result, microsecond rheology now permits the formulation of inks with tailored viscosities that vary according to the time-scale of their dynamics, i.e. low effective viscosity during jetting but high at break up and landing. These advances have permitted the community to assess, and often predict, the ink jetting behaviour, at a given printing frequency, based on the linear or non-linear viscoelasticity and other fluid characteristics. Advances in fluidic systems and in waveform design have now enabled the printing of high viscous inks that were previously impossible to jet on demand. This capability is opening up new markets and opportunities for inkjet, from the printing of glues to the use of heavily loaded ceramic inks. Advances in printhead design, and the assessment of printing patterns using common standards, now allow the verifiable and reliable operation of industrial-scale digital inkjet printing in a wide range of environments. Recent improvements on printhead cleaning protocols, have contributed to an increase in printing speed and operating time by reducing the production of mist and satellite droplets neighbouring the printhead region. Thanks to these improvements, inkjet is displacing traditional technologies, such as offset and screen printing, in large markets including graphics, packaging and labelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.