Understanding environmental factors is essential to maximizing the biomass production of plants. There have been many studies on the effects of the photosynthetic photon flux (PPF), photoperiod and air temperature as separate factors affecting plants, including under a closed transplant production system (CTPS). However, few studies have investigated the combined effects of these factors on plant growth. Germinated tomato and red pepper seedlings were transferred to three different photoperiods with five different photosynthetic photon fluxes (PPFs) at an air temperature of 25/20 °C to investigate plant growth under a different daily light integral (DLI). Three different air temperatures, 23/20, 25/20, and 27/20 °C (photo/dark periods), with five different PPFs were used to examine plant growth under different DIFs (difference between the day and night temperature). Increasing the DLI from 4.32 to 21.60 mol·m−2·d−1, either by increasing the photoperiod or PPF, improved the growth of seedlings in both cultivars. However, when comparing treatments that provided the same DLI, tomato seedlings had s significantly higher growth when grown under longer photoperiods and s lower PPF. Even in higher DLI conditions, reduced growth due to higher PPF indicated that excessive light energy was a limiting factor. At 23 and 25 °C, tomato seedlings showed similar correlation curves between growth and PPF. However, at the higher temperature of 27 °C, while the slope of the curve at low PPFs was similar to that of the curves at lower temperatures, the slope at high PPFs was flatter. On the other hand, red pepper seedlings displayed the same correlation curve between growth and PPF at all tested temperatures, and red pepper plants accumulated more dry weight even at higher temperatures. These results suggested that the combination effect was more useful to observe these overall tendencies, especially in reacting to a second factor. This will provide us with more information and a deeper understanding of plant characteristics and how they will behave under changing environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.