In this paper, an Internet-of-Things (IoT) system containing a relay selection is studied as employing an emerging multiple access scheme, namely non-orthogonal multiple access (NOMA). This paper proposes a new scheme to consider secure performance, to be called relay selection NOMA (RS-NOMA). In particular, we consider metrics to evaluate secure performance in such an RS-NOMA system where a base station (master node in IoT) sends confidential messages to two main sensors (so-called NOMA users) under the influence of an external eavesdropper. In the proposed IoT scheme, both two NOMA sensors and an illegal sensor are served with different levels of allocated power at the base station. It is noticed that such RS-NOMA operates in two hop transmission of the relaying system. We formulate the closed-form expressions of secure outage probability (SOP) and the strictly positive secure capacity (SPSC) to examine the secrecy performance under controlling setting parameters such as transmit signal-to-noise ratio (SNR), the number of selected relays, channel gains, and threshold rates. The different performance is illustrated as performing comparisons between NOMA and orthogonal multiple access (OMA). Finally, the advantage of NOMA in secure performance over orthogonal multiple access (OMA) is confirmed both analytically and numerically.
Non-orthogonal multiple access (NOMA) is considered as one of the most promising technologies to handle the issue of spectrum scarcity in beyond fifth-generation (5G) networks. Integrating NOMA in cognitive radio (CR) network is expected to usher a new era of reliable, seamless, and massive connectivity. In this regard, this work explores the relay selection problem in CR networks when operating in the spectrum sharing model. Specifically, the secondary users (SUs) in the CR-NOMA network opportunistically access the licensed spectrum resources to boost the number of accessible SUs sharing the limited and dynamic spectrum resources. Moreover, to improve the performance of far users, partial relay selection architecture is exploited at full-duplex (FD) and half duplex (HD) relays for both uplink and downlink communications. For in-depth performance evaluation, we provide closed-form expressions of the outage probabilities of the users in FD and HD relay-aided CR-NOMA networks. In addition to this, the analytical expressions of asymptotic outage probabilities and ergodic capacity are also provided which unveils the critical factors affecting the performance of CR-NOMA networks. To validate the derived expressions, extensive simulations are performed that demonstrate the accuracy of analytical expressions for FD and HD relay-aided CR-NOMA networks. INDEX TERMS Cognitive radio network, full-duplex, relay selection, Non-orthogonal multiple access (NOMA).
This paper investigates non-orthogonal multiple access (NOMA), cooperative relaying, and energy harvesting to support device-to-device (D2D) transmission. In particular, we deploy multiple relay nodes and a cell-center D2D device which can operate in full-duplex (FD) or half-duplex (HD) mode to communicate with a cell-edge D2D device. In this context, there are two possible signal transmission paths from the base station (BS) to the far D2D user either through multiple decode-and-forward (DF) relay nodes or through a near D2D user. Consequently, we propose three schemes to support D2D-NOMA systems, namely non-energy harvesting relaying (Non-EHR), energy harvesting relaying (EHR) and quantize-mapforward relaying (QMFR) schemes. For each of the proposed schemes, closed-form expressions of the outage probabilities of both D2D users are derived. Extensive Monte-Carlo simulation results are provided to validate the derived analytical expressions. The study results show that the proposed schemes can improve the outage performance compared to conventional orthogonal multiple access (OMA) schemes. Moreover, it is shown that the Non-EHR scheme achieves the best outage performance among the three considered schemes.
In this paper, we investigate power domain division-based multiple access (PDMA) to support the base stations (BS) equipped with multiple antennas to serve mobile users. Such a system deploys multiple input single output (MISO)-based wireless transmission and a full-duplex (FD) scheme. Furthermore, such MISO PDMA system consists of BS employing transmit antenna selection to reduce complexity in signal processing at the receivers. We distinguish two kinds of mobile users, device-to-device (D2D) users and traditional users. In such MISO PDMA, there exists a trade-off between outage performance of each PDMA user and power allocation factors. Since the implementation of the FD scheme at PDMA users, bandwidth efficiency will be enhanced despite the existence of self-interference related to such FD. In particular, exact expressions of outage probability are derived to exhibit system performance with respect to D2D users. Finally, valuable results from the simulated parameters together with the analytical results show that MISO PDMA can improve its performance by increasing the number of transmit antennas at the BS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.