This study reports the anti-inflammatory activity-guided fractionation of the aerial part of Piper bavinum C. CD. (Piperaceae) that led to the isolation of eight secondary metabolites (1–8). The chemical structures of 1–8 were established mainly by NMR and mass spectra. Compound 5 was isolated from P. bavinum for the first time. All the isolated compounds were evaluated against LPS-induced NO production in macrophage RAW 264.7 cells in vitro. Among them, compound 4 showed the most potent inhibitory activity against the LPS-induced NO production with an IC50 value of 5.2 μM followed by compound 5 that inhibited NO production with an IC50 value of 13.5 μM. In the protein levels, compound 4 suppressed LPS-induced COX-2 and iNOS expressions in a dose-dependent manner. The results suggested that P. bavinum and its constituents might exert anti-inflammatory effects.
Climate smart agriculture (CSA) has gained considerable attention in Vietnam due to its potential to increase food security and farming system resilience while decreasing greenhouse gas emissions. In recent years, several CSA practices have been introduced in rice production, the most important sub-sector of Vietnam’s agriculture. However, few studies have been done in Vietnam to produce comprehensive assessments of CSA performance in the rice sector. This research proposes a comprehensive approach to assess CSA practices through a new set of evaluation indicators. A case study in An Giang province of the Vietnamese Mekong River Delta was implemented to evaluate the performance of five CSA models versus that of the triple rice crop system (i.e., benchmarking model). Results show that rice-shrimp and rice-lotus rotations are most profitable, low-risk, and applicable at a larger scale. Given that the current study analyzed and calculated only a small number of indicators and types of CSA practices, further research is necessary to test all indicators and diversified types of CSA models.
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane’s raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.