P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis.
Cyclodextrins are widely used excipients for increasing the bioavailability of poorly water-soluble drugs. Their effect on drug absorption in the gastrointestinal tract is explained by their solubility- and permeability-enhancement. The aims of this study were to investigate penetration properties of fluorescently labeled randomly methylated-beta-cyclodextrin (FITC-RAMEB) on Caco-2 cell layer and examine the cellular entry of cyclodextrins on intestinal cells. The permeability of FITC-RAMEB through Caco-2 monolayers was very limited. Using this compound in 0.05 mM concentration the permeability coefficient was 3.35±1.29×10−8 cm/s and its permeability did not change in the presence of 5 mM randomly methylated-beta-cyclodextrin. Despite of the low permeability, cellular accumulation of FITC-RAMEB in cytoplasmic vesicles was significant and showed strong time and concentration dependence, similar to the characteristics of the macropinocytosis marker Lucifer Yellow. The internalization process was fully inhibited at 0°C and it was drastically reduced at 37°C applying rottlerin, an inhibitor of macropinocytosis. Notably, FITC-RAMEB colocalized with the early endosome organizer Rab5a. These results have revealed that FITC-RAMEB is able to enter intestinal epithelial cells by fluid-phase endocytosis from the apical side. This mechanism can be an additional process which helps to overcome the intestinal barrier and contributes to the bioavailability enhancement of cyclodextrins.
Effects of some detergents-most frequently used in membrane raft studies-on the polymerization properties of actin were examined under in vitro and in vivo conditions, for protein and cellular investigations, respectively. Under in vitro conditions the polymerization rates were measured with pyrene-labeled actin. We found that polymerization rate depended on the detergent concentration by following either biphasic characteristics or only decreasing tendency. The strongest effects were observed at relatively low detergent concentrations. SDS-PAGE electrophoresis and dynamic light-scattering measurements provided further evidences for the size distribution of actin filaments formed under the influence of detergents. Comparing the polymerization rates measured in the presence of different detergents to those obtained with various magnesium and KCl concentrations showed that detergents may influence the actin polymerization at three levels by modifying: (i) the monomer-monomer interaction, (ii) the local ionic strength, and (iii) the affinity of actin for various cations. In vivo studies on NIH 3T3MDR1 cells using TRITC-phalloidin detected fast depolymerization of large extent around the critical micellar concentrations of the detergents. We concluded that microdomain insolubility observed in the presence of detergents is hardly to be the result of the stabilization of the submembrane actin cytoskeleton merely; rather inter-lipid and lipid-protein interactions are also involved within the detergent-resistant membranes. '
The human P-glycoprotein (P-gp), a transporter responsible for multidrug resistance, is present in the plasma membrane’s raft and non-raft domains. One specific conformation of P-gp that binds to the monoclonal antibody UIC2 is primarily associated with raft domains and displays heightened internalization in cells overexpressing P-gp, such as in NIH-3T3 MDR1 cells. Our primary objective was to investigate whether the trafficking of this particular P-gp conformer is dependent on cholesterol levels. Surprisingly, depleting cholesterol using cyclodextrin resulted in an unexpected increase in the proportion of raft-associated P-gp within the cell membrane, as determined by UIC2-reactive P-gp. This increase appears to be a compensatory response to cholesterol loss from the plasma membrane, whereby cholesterol-rich raft micro-domains are delivered to the cell surface through an augmented exocytosis process. Furthermore, this exocytotic event is found to be part of a complex trafficking mechanism involving lysosomal exocytosis, which contributes to membrane repair after cholesterol reduction induced by cyclodextrin treatment. Notably, cells overexpressing P-gp demonstrated higher total cellular cholesterol levels, an increased abundance of stable lysosomes, and more effective membrane repair following cholesterol modifications. These modifications encompassed exocytotic events that involved the transport of P-gp-carrying rafts. Importantly, the enhanced membrane repair capability resulted in a durable phenotype for MDR1 expressing cells, as evidenced by significantly improved viabilities of multidrug-resistant Pgp-overexpressing immortal NIH-3T3 MDR1 and MDCK-MDR1 cells compared to their parents when subjected to cholesterol alterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.