A transition-metal-free single electron transfer reaction has been developed for the synthesis of [D]-alkenes from terminal alkynes using sodium dispersions as the electron donor and EtOD- d as the deuterium source. Both reagents are cost-effective and bench-stable. This practical method exhibits remarkable terminal alkyne selectivity and exclusive alkene selectivity. Excellent deuterium incorporations and yields were achieved across a broad range of terminal alkynes without olefin isomerization. Of note, this reaction is highly solvent dependent. n-Hexane provides unique enhancement to this reductive deuteration process.
A modified Bouveault-Blanc reduction has been developed for the synthesis of α,α-dideuterio alcohols from carboxylic acid esters. Sodium dispersions are used as the electron donor in this electron transfer reaction, and ethanol-d is employed as the deuterium source. This reaction uses stable, cheap, and commercially available reagents, is operationally simple, and results in excellent deuterium incorporation across a broad range of aliphatic esters, which provides an attractive alternative to reactions mediated by expensive pyrophoric alkali metal deuterides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.