Background Protein histidine phosphorylation (pHis) plays critical roles in prokaryotic signal transduction pathways and various eukaryotic cellular processes. It is estimated to account for 6–10% of the phosphoproteome, however only hundreds of pHis sites have been discovered to date. Due to the inherent disadvantages of experimental methods, it is an urgent task for developing efficient computational approaches to identify pHis sites. Results Here, we present a novel tool, pHisPred, for accurately identifying pHis sites from protein sequences. We manually collected the largest number of experimental validated pHis sites to build benchmark datasets. Using randomized tenfold CV, the weighted SVM-RBF model shows the best performance than other four commonly used classification models (LR, KNN, RF, and MLP). From ten thousands of features, 140 and 150 most informative features were individually selected out for eukaryotic and prokaryotic models. The average AUC and F1-score values of pHisPred were (0.81, 0.40) and (0.78, 0.46) for tenfold CV on the eukaryotic and prokaryotic training datasets, respectively. In addition, pHisPred significantly outperforms other tools on testing datasets, in particular on the eukaryotic one. Conclusion We implemented a python program of pHisPred, which is freely available for non-commercial use at https://github.com/xiaofengsong/pHisPred. Moreover, users can use it to train new models with their own data.
A conventional steady-state power flow security check only implements point-by-point assessment, which cannot provide a security margin for system operation. The concept of a steady-state security region is proposed to effectively tackle this problem. Considering that the commissioning of the increasing number of HVDC (High Voltage Direct Current) and the fluctuation of renewable energy have significantly affected the operation and control of a conventional AC system, the definition of the steady-state security region of the AC/DC power system is proposed in this paper based on the AC/DC power flow calculation model including LCC/VSC (Line Commutated Converter/Voltage Sourced Converter)-HVDC transmission and various AC/DC constraints, and hence the application of the security region is extended. In order to ensure that the proposed security region can accurately provide global security information of the power system under the fluctuations of renewable energy, this paper presents four methods (i.e., a screening method of effective boundary surfaces, a fitting method of boundary surfaces, a safety judging method, and a calculation method of distances and corrected distance between the steady-state operating point and the effective boundary surfaces) based on the relation analysis between the steady-state security region geometry and constraints. Also, the physical meaning and probability analysis of the corrected distance are presented. Finally, a case study is demonstrated to test the feasibility of the proposed methods.
Background Ovarian serous cystadenocarcinoma is one of the most serious gynecological malignancies. Circular RNA (circRNA) is a type of noncoding RNA with a covalently closed continuous loop structure. Abnormal circRNA expression might be associated with tumorigenesis because of its complex biological mechanisms by, for example, functioning as a microRNA (miRNA) sponge. However, the circRNA expression profile in ovarian serous cystadenocarcinoma and their associations with other RNAs have not yet been characterized. The main purpose of this study was to reveal the circRNA expression profile in ovarian serous cystadenocarcinoma. Methods We collected six specimens from three patients with ovarian serous cystadenocarcinoma and adjacent normal tissues. After RNA sequencing, we analyzed the expression of circRNAs with relevant mRNAs and miRNAs to characterize potential function. Results 15,092 unique circRNAs were identified in six specimens. Approximately 46% of these circRNAs were not recorded in public databases. We then reported 353 differentially expressed circRNAs with oncogenes and tumor-suppressor genes. Furthermore, a conjoint analysis with relevant mRNAs revealed consistent changes between circRNAs and their homologous mRNAs. Overall, construction of a circRNA–miRNA network suggested that 4 special circRNAs could be used as potential biomarkers. Conclusions Our study revealed the circRNA expression profile in the tissues of patients with ovarian serous cystadenocarcinoma. The differential expression of circRNAs was thought to be associated with ovarian serous cystadenocarcinoma in the enrichment analysis, and co-expression analysis with relevant mRNAs and miRNAs illustrated the latent regulatory network. We also constructed a complex circRNA–miRNA interaction network and then demonstrated the potential function of certain circRNAs to aid future diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.