This study investigates the switching characteristics of the silicon oxynitride (SiOxNy)-based bipolar resistive random-access memory (RRAM) devices at different operating ambiances at temperatures ranging from 300 K to 77 K. The operating ambiances (open air or vacuum) and temperature affect the device’s performance. The electroforming-free multilevel bipolar Au/Ni/SiOxNy/p+-Si RRAM device (in open-air) becomes bilevel in a vacuum with an on/off ratio >104 and promising data retention properties. The device becomes more resistive with cryogenic temperatures. The experimental results indicate that the presence and absence of moisture (hydrogen and hydroxyl groups) in open air and vacuum, respectively, alter the elemental composition of the amorphous SiOxNy active layer and Ni/SiOxNy interface region. Consequently, this affects the overall device performance. Filament-type resistive switching and trap-controlled space charge limited conduction (SCLC) mechanisms in the bulk SiOxNy layer are confirmed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.