Background: The number of patients with pneumonia stemming from the 2019 novel coronavirus (COVID-19) infection has increased rapidly. However, the clinical characteristics of discharged patients remain little known. Here, we attempt to describe the clinical characteristics and treatment experiences of discharged cases from Taizhou, China.Methods: A total of 60 patients with COVID-19-infected pneumonia who were discharged from Taizhou
This article presents a UK supermarket worker’s experiences of work during the COVID-19 pandemic. Writing during a period of uncertainty, Jay’s narrative reveals how the sudden and constant transitions between mundanity and extremity on the shop floor evoke conflicting emotions and work intensification that disrupt and reconstruct normality. His accounts describe violent customer behaviours, absent management, a lack of clear organisational policies, and the different views of appropriate health and safety measures among colleagues. It illustrates how liminality in the workplace at a time of crisis can endanger employees whose seemingly mundane jobs become extreme.
Thin cylindrical shells used in engineering applications are often susceptible to failure by elastic buckling. Most experimental and theoretical research on shell buckling relates only to simple and relatively uniform stress states, but many practical load cases involve stresses that vary significantly throughout the structure. The buckling strength of an imperfect shell under relatively uniform compressive stresses is often much lower than that under locally high stresses, so the lack of information and the need for conservatism have led standards and guides to indicate that the designer should use the buckling stress for a uniform stress state even when the peak stress is rather local. However, this concept leads to the use of much thicker walls than is necessary to resist buckling, so many knowledgeable designers use very simple ideas to produce safe but unverified designs. Unfortunately, very few scientific studies of shell buckling under locally elevated compressive stresses have ever been undertaken. The most critical case is that of the cylinder in which locally high axial compressive stresses develop extending over an area that may be comparable with the characteristic size of a buckle. This paper explores the buckling strength of an elastic cylinder in which a locally high axial membrane stress state is produced far from the boundaries (which can elevate the buckling strength further) and adjacent to a serious geometric imperfection. Care is taken to ensure that the stress state is as simple as possible, with local bending and the effects of internal pressurization eliminated. The study includes explorations of different geometries, different localizations of the loading, and different imperfection amplitudes. The results show an interesting distinction between narrower and wider zones of elevated stresses. The study is a necessary precursor to the development of a complete design rule for shell buckling strength under conditions of locally varying axial compressive stress.
This article highlights the weakness of the UK's occupational health and safety infrastructure exposed by the COVID-19 pandemic. Utilising a political economy perspective, it captures the critical role of workplace union safety representatives in mitigating risk and contesting the expropriation of health and recommodification of labour, specifically inadequate sick pay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.