Glycyrrhiza Uralensis Polysaccharide (GCP), as a macromolecular polysaccharide extracted from the Traditional Chinese Medicine (TCM) - Licorice has been proved to inhibit tumor growth in vitro and in vivo; however, the specific anti-tumor mechanism of GCP needs to be further investigated. In this study, we explore the anti-tumor mechanism of GCP from the angle of gut microbiota. Colon carcinoma cells (CT-26) were used to set up a tumor-bearing mouse model. After 14 days of GCP treatment, the weights of tumors were significantly reduced. In addition, HE staining of tissue sections reflected that GCP could effectively inhibit tumor metastasis. 16SrRNA high-throughput sequencing of fecal samples showed a significant change between the model group and GCP group in the composition of gut microbiota. Subsequently, gut microbiota depletion and fecal transplantation experiments further confirmed the relationship between the anti-tumor effects of GCP and gut microbiota. Following depletion of gut microbiota, GCP cannot inhibit tumor growth. Fecal transplantation experiments found that transplanting the feces of GCP-treated mice, to a certain extent, could inhibit tumor growth and metastasis. These results indicate that Glycyrrhiza Polysaccharides exert anti-tumor effects by affecting gut microbiota composition.
The formation of CH3NH3PbBr3 nanocrystals and silicone resin composites greatly improves the stability of CH3NH3PbBr3 nanocrystals against water, heat and UV exposure.
Stretchable and self-healing polymer gels with luminescent property are very promising materials for next generation soft optical devices. This work presents the preparation of self-healing and luminescent polymer gels by simply blending organometal halide perovskite nanocrystals (OHP NCs) with poly(dimethylsiloxane)-urea copolymer (PDMS-urea). On the one hand, the obtained luminescent gels are not only flexible, stretchable and relatively transparent, they also exhibit excellent self-healing capability due to the reversible hydrogen bonding network in the PDMS-urea copolymer. On the other hand, the embedding of OHP NCs (MAPbBr3 and MAPbI3 NCs) inside the hydrophobic PDMS-urea gel greatly improved the photoluminescence stability of OHP NCs against water. Their applications as phosphors for LEDs have been demonstrated. Both the MAPbBr3/PDMS-urea gel and MAPbI3/PDMS-urea gel can fully convert the blue emission of GaN chip to green and red emissions, respectively. These gels can be used as photoluminescent materials in flexible optical devices with good self-healing capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.