Transit-time ultrasonic flowmeters (TTUFs) are among the most widely used devices for flow measurements. However, traditional TTUFs are usually based on a bulk piezoelectric transducer, which limits their application in small-diameter channels. In this paper, we developed a miniaturized TTUF based on scandium-doped aluminum nitride (ScAlN) piezoelectric micromachined ultrasonic transducers (PMUTs). The proposed TTUF contains two PMUT-based transceivers and a π-type channel. The PMUTs contain 13 × 13 square cells with dimensions of 2.8 × 2.8 mm2. To compensate for the acoustic impedance mismatch with liquid, a layer of polyurethane is added to the surface of the PMUTs as a matching layer. The PMUT-based transceivers show good transmitting sensitivity (with 0.94 MPa/V surface pressure) and receiving sensitivity (1.79 mV/kPa) at a frequency of 1 MHz in water. Moreover, the dimensions of the π-type channel are optimized to achieve a measurement sensitivity of 82 ns/(m/s) and a signal-to-noise ratio (SNR) better than 15 dB. Finally, we integrate the fabricated PMUTs into the TDC-GP30 platform. The experimental results show that the developed TTUF provides a wide range of flow measurements from 2 to 300 L/h in a channel of 4 mm diameter, which is smaller than most reported channels. The accuracy and repeatability of the TTUF are within 0.2% and 1%, respectively. The proposed TTUF shows great application potential in industrial applications such as medical and chemical applications.
In this work, a miniaturized, low-cost, low-power and high-sensitivity AlN-based micro-electro-mechanical system (MEMS) hydrophone is proposed for monitoring water pipeline leaks. The proposed MEMS Hydrophone consists of a piezoelectric micromachined ultrasonic transducer (PMUT) array, an acoustic matching layer and a pre-amplifier amplifier circuit. The array has 4 (2 × 2) PMUT elements with a first-order resonant frequency of 41.58 kHz. Due to impedance matching of the acoustic matching layer and the 40 dB gain of the pre-amplifier amplifier circuit, the packaged MEMS Hydrophone has a high sound pressure sensitivity of −170 ± 2 dB (re: 1 V/μPa). The performance with respect to detecting pipeline leaks and locating leak points is demonstrated on a 31 m stainless leaking pipeline platform. The standard deviation (STD) of the hydroacoustic signal and Monitoring Index Efficiency (MIE) are extracted as features of the pipeline leak. A random forest model is trained for accurately classifying the leak and no-leak cases using the above features, and the accuracy of the model is about 97.69%. The cross-correlation method is used to locate the leak point, and the localization relative error is about 10.84% for a small leak of 12 L/min.
Bowel sounds contain some important human physiological parameters which can reflect information about intestinal function. In this work, in order to realize real-time monitoring of bowel sounds, a portable and wearable bowel sound electronic monitor based on piezoelectric micromachined ultrasonic transducers (PMUTs) is proposed. This prototype consists of a sensing module to collect bowel sounds and a GUI (graphical user interface) based on LabVIEW to display real-time bowel sound signals. The sensing module is composed of four PMUTs connected in parallel and a signal conditioning circuit. The sensitivity, noise resolution, and non-linearity of the bowel sound monitor are measured in this work. The result indicates that the designed prototype has high sensitivity (−142.69 dB), high noise resolution (50 dB at 100 Hz), and small non-linearity. To demonstrate the characteristic of the designed electronic monitor, continuous bowel sound monitoring is performed using the electronic monitor and a stethoscope on a healthy human before and after a meal. Through comparing the experimental results and analyzing the signals in the time domain and frequency domain, this bowel sound monitor is demonstrated to record bowel sounds from the human intestine. This work displays the potential of the sensor for the daily monitoring of bowel sounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.