Equidistant combination multiple linear regression (EC-MLR) for the quasi-continuous wavelength selection of spectroscopic analysis was proposed and successfully applied to the reagent-free determination of soil organic matter with near-infrared spectroscopy. For comparison, the continuous-mode moving window partial least squares (MWPLS) and the discrete-mode successive projections algorithm (SPA) were improved by considering the stability and applied to the same analysis object as well. All methods exhibited good effect, but the modeling accuracy, stability, and validation effect of EC-MLR were better than that of the other two methods. Compared with MWPLS, the optimal EC-MLR model contained only 16 wavelengths, and method complexity was substantially reduced. Compared with SPA-MLR, the optimal EC-MLR model could easily undergo spectral preprocessing to improve predictive capability. Moreover, appropriate equidistant discrete wavelength combination with EC-MLR corresponded to the spectral absorption band with proper resolution and can effectively overcome co-linearity interruption for the MLR model. Thus, the EC-MLR method has great potential in practical application and instrument design.
A new strategy for quantitative analysis of a major clinical biochemical indicator called glycated hemoglobin (HbA1c) was proposed. The technique was based on the simultaneous near-infrared (NIR) spectral determination of hemoglobin (Hb) and absolute HbA1c content (Hb HbA1c) in human hemolysate samples. Wavelength selections were accomplished using the improved moving window partial least square (MWPLS) method for stability. Each model was established using an approach based on randomness, similarity, and stability to obtain objective, stable, and practical models. The optimal wavebands obtained using MWPLS were 958 to 1036 nm for Hb and 1492 to 1858 nm for Hb HbA1c, which were within the NIR overtone region. The validation root mean square error and validation correlation coe±cients of prediction (V -SEP, V -R P ) were 3.4 g L À1 and 0.967 for Hb, respectively, whereas the corresponding values for Hb HbA1c were 0.63 g L À1 and 0.913. The corresponding V -SEP and V -R P were 0.40% and 0.829 for the relative percentage of HbA1c. The experimental results con¯rm the feasibility for the quanti¯cation of HbA1c based on simultaneous NIR spectroscopic analyses of Hb and Hb HbA1c.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.