Effective feature extraction and classification methods are of great importance for motor imagery (MI)-based brain-computer interface (BCI) systems. The common spatial pattern (CSP) algorithm is a widely used feature extraction method for MI-based BCIs. In this work, we propose a novel spatial-frequency-temporal optimized feature sparse representation-based classification method. Optimal channels are selected based on relative entropy criteria. Significant CSP features on frequency-temporal domains are selected automatically to generate a column vector for sparse representation-based classification (SRC). We analyzed the performance of the new method on two public EEG datasets, namely BCI competition III dataset IVa which has five subjects and BCI competition IV dataset IIb which has nine subjects. Compared to the performance offered by the existing SRC method, the proposed method achieves average classification accuracy improvements of 21.568 and 14.38% for BCI competition III dataset IVa and BCI competition IV dataset IIb, respectively. Furthermore, our approach also shows better classification performance when compared to other competing methods for both datasets.
The controlling of robotic arms based on brain–computer interface (BCI) can revolutionize the quality of life and living conditions for individuals with physical disabilities. Invasive electroencephalography (EEG)-based BCI has been able to control multiple degrees of freedom (DOFs) robotic arms in three dimensions. However, it is still hard to control a multi-DOF robotic arm to reach and grasp the desired target accurately in complex three-dimensional (3D) space by a noninvasive system mainly due to the limitation of EEG decoding performance. In this study, we propose a noninvasive EEG-based BCI for a robotic arm control system that enables users to complete multitarget reach and grasp tasks and avoid obstacles by hybrid control. The results obtained from seven subjects demonstrated that motor imagery (MI) training could modulate brain rhythms, and six of them completed the online tasks using the hybrid-control-based robotic arm system. The proposed system shows effective performance due to the combination of MI-based EEG, computer vision, gaze detection, and partially autonomous guidance, which drastically improve the accuracy of online tasks and reduce the brain burden caused by long-term mental activities.
The motor imagery (MI) paradigm has been wildly used in brain-computer interface (BCI), but the difficulties in performing imagery tasks limit its application. Mechanical vibration stimulus has been increasingly used to enhance the MI performance, but its improvement consistence is still under debate. To develop more effective vibration stimulus methods for consistently enhancing MI, this study proposes an EEG phase-dependent closed-loop mechanical vibration stimulation method. The subject’s index finger of the non-dominant hand was given 4 different vibration stimulation conditions (i.e., continuous open-loop vibration stimulus, two different phase-dependent closed-loop vibration stimuli and no stimulus) when performing two tasks of imagining movement and rest of the index finger from his/her dominant hand. We compared MI performance and brain oscillatory patterns under different conditions to verify the effectiveness of this method. The subjects performed 80 trials of each type in a random order, and the average phase-lock value of closed-loop stimulus conditions was 0.71. It was found that the closed-loop vibration stimulus applied in the falling phase helped the subjects to produce stronger event-related desynchronization (ERD) and sustain longer. Moreover, the classification accuracy was improved by about 9% compared with MI without any vibration stimulation (p = 0.012, paired t-test). This method helps to modulate the mu rhythm and make subjects more concentrated on the imagery and without negative enhancement during rest tasks, ultimately improves MI-based BCI performance. Participants reported that the tactile fatigue under closed-loop stimulation conditions was significantly less than continuous stimulation. This novel method is an improvement to the traditional vibration stimulation enhancement research and helps to make stimulation more precise and efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.