Understanding the embrittlement of reactor pressure vessel (RPV) steels at high fluence region is very important for the long term operation of nuclear power plants. In this study, extensive microstructural analyses were performed on the RPV steels irradiated to very high fluences beyond 1020n/cm2, E>1 MeVat high fluxes under the Pressurized Thermal Shock and Nuclear Power Plant Integrity Management projects in Japan. Three dimensional atom probe analyses were performed to characterize the solute atom cluster formation in these materials. The effects of fluence, flux, and chemical compositions on the characteristics of clusters were analyzed. The formation of dislocation loops was identified in the transmission electron microscopy analyses of high and low Cu steels, and the changes in loop size and number density with fluence were studied. P segregation on grain boundaries was also studied by surface analyses as well as grain boundary chemical analyses. We found that nonhardening embrittlement due to grain boundary fracture is not a major contributor to the embrittlement in these materials and irradiation conditions. The correlation of the microstructural changes and the Charpy transition temperature shifts was studied. The volume fraction of solute atom clusters has an excellent correlation with the transition temperature shifts. The Orowan model calculations of the contributions of dislocation loops to the transition temperature shifts show that in low Cu materials, dislocation loops may be a major contributor, but in Cu containing materials its contribution is weak. Root-sum-square of the contributions of solute atom clusters and dislocation loops seems to be a reasonable model to describe the total ΔRTNDT.
The effect of the neutron flux at high fluence on the microstructural and hardness changes of a reactor pressure vessel (RPV) steel was investigated. An accelerated test reactor irradiation of a RPV material, previously irradiated in commercial reactors, was carried out at the lowest possible neutron fluxes in order to obtain neutron fluences up to approximately 1×1020 n/cm2 (E>1MeV). State-of-the-art experimental techniques such as three-dimensional atom probe were applied to carry out advanced quantitative characterization of defect features in the materials. Results for the same material irradiated in both high and low flux conditions are compared. For neutron fluences above 6×1019 n/cm2 (E>1MeV) the difference in the neutron fluence dependence of the increase in hardness is not seen for any neutron flux condition. The volume fraction of solute atom clusters increases linearly with neutron fluence, and the influence of neutron flux is not significant. The component elements and the chemical composition of the solute atom clusters formed by the irradiation do not change regardless of the neutron fluence and flux. The square root of the volume fraction of the solute atom clusters is a good correlation with the increase in hardness.
Neutron radiation embrittlement of reactor pressure vessel (RPV) steels is one of critical issues for the structural integrity assessment of the RPVs. Especially, the embrittlement at high fluences is of great interest for the long term operation of light water reactors because information on the mechanical property changes as well as embrittlement mechanisms is limited at high fluences. In this study, microstructural analyses were conducted on the RPV steels irradiated to high fluences in order to confirm the applicability of the trend curve at high fluence region. Steels investigated are five base metals and a weld metal with their copper content ranging from 0.02 to 0.25 wt. %. These steels were irradiated in the material test reactors to fluence up to 1.3 × 1020 n/cm2, E > 1MeV, at temperature of about 290 °C. After irradiation, transmission electron microscope (TEM) observations were performed to characterize the nano-meter scale microstructural changes due to irradiation. Formation of dislocation loops was observed. Number density and diameter of dislocation loop was investigated. Effects of chemical composition of steel and fluence on dislocation loop formation are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.